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Abstract. Data uncertainty is inherent in many applications, including
sensor networks, scientific data management, data integration, location-
based applications, etc. One of common queries for uncertain data is the
probabilistic nearest neighbor (PNN) query that returns all uncertain
objects with non-zero probabilities to be NN. In this paper we study
the PNN query with a probability threshold (PNNT), which returns all
objects with the NN probability greater than the threshold. Our PNNT
query removes the assumption in all previous papers that the probability
of an uncertain object always adds up to 1, i.e., we consider missing prob-
abilities. We propose an augmented R-tree index with additional proba-
bilistic information to facilitate pruning as well as global data structures
for maintaining the current pruning status. We present our algorithm
for efficiently answering PNNT queries and perform experiments to show
that our algorithm significantly reduces the number of objects that need
to be further evaluated as NN candidates.

1 Introduction

The nearest neighbor (NN) query is one of the most common database queries
that finds the nearest object to a query object given some distance function.
Many algorithms have been proposed for NN queries [13, 3, 11] where the value
of data is certain. However, uncertainty in data is inherent in many applica-
tions, such as sensor networks and location-based applications [5], where data
can take different values with probabilities due to measurement errors. Take the
location-based data for example. Suppose all data objects are in 2-dimensional
space. The exact location of an object is unknown. However, each object is asso-
ciated with a region of its possible locations and the probability density function
(pdf) of the object’s location within the region is known. In this probabilistic
data setting, since each object has a probability (maybe 0) to be NN to a query
object, we have to take probabilities into account when answering NN queries:
We can either return all objects with a non-zero probability to be NN or return
all objects with the NN probability greater than some threshold. We call the
former probabilistic nearest neighbor (PNN) queries and the latter probabilis-
tic nearest neighbor threshold (PNNT) queries. The formal definitions of both



queries are presented in Section 1.1. Several papers have studied the NN problem
with uncertain data. For example, [5] proposed an algorithm for answering PNN
queries. The algorithm returns all objects along with their non-zero NN proba-
bilities, which requires a large number of expensive computations of the exact
NN probabilities. However, most of the time we are only interested in objects
with a relatively large probability to be NN, hence a probability threshold can be
specified for the query to only return objects with NN probability that meets the
threshold (PNNT queries). For such queries, the threshold can be leveraged to
prune objects that cannot satisfy the probability requirement. [8] proposed the
constrained probabilistic nearest neighbor query (C-PNN) with both threshold
(P ) and tolerance (∆) constraints, which is equivalent to our PNNT query with
the threshold being P −∆.

We generalize the above NN problems for uncertain data by taking into
account missing probabilities, which is not addressed in any of the previous NN
papers such as [5, 8]. The missing probabilities of an object result in its absence.
For the location-based data, this means that the probability of the object’s
location in its uncertain region may not add up to 1, indicating that there may
be some probability that the object does not exist. In an uncertain database,
if we consider each object to be a tuple in a relation, then the uncertain data
in our NN problem has both attribute and tuple uncertainty. This is consistent
with the recent uncertain model [16] where both the value of a given attribute
in a tuple and the presence of the tuple itself may be uncertain. For attribute
uncertainty, we assume that the uncertain attribute is associated with a pdf. For
tuple uncertainty, the probability of its presence is the sum of probabilities over
the pdf of all its attributes, which can be less than 1.

In this paper, we limit our discussion to NN queries with at most two uncer-
tain attributes (i.e., 2-dimensional space) for simplicity, although our approach
does not have such restriction and can be extended to higher-dimensional space.
We now formally define our NN problem for uncertain data, and show why it is
more complicated with missing probabilities.

1.1 Problem Definitions

Assuming a database of objects with uncertain attributes as continuous random
variables associated with pdfs, we give two formal problem definitions for NN
queries of such objects.

Definition 1. Probabilistic Nearest Neighbor (PNN) Query: Given a
query point q and a set of objects with uncertain attributes and their corre-
sponding pdfs, a PNN query returns the probability Pnn(O) that object O is NN
to q for each object O.

For PNN queries, the probability for each object to be NN must be computed
unless there is evidence that the object cannot be NN (i.e., the NN probabil-
ity is 0). This implies a huge number of computations if the number of objects
is huge. Moreover, the computation of the probability itself is very expensive,



which depends on many other objects whose uncertain regions overlap with its
own [5]. The exact probability computation can involve integrations over multi-
ple subregions that may have arbitrary pdfs, resulting in a high computational
cost. However, objects having a small probability to be NN are generally less
important than those with a high probability. For many applications, it is only
necessary to retrieve objects with the NN probability exceeding a given thresh-
old. The formal definition of such queries is given below.

Definition 2. Probabilistic Nearest Neighbor Threshold (PNNT) Query:
Given a query point q, a threshold τ and a set of objects with uncertain attributes
and their pdfs, the PNNT query returns every object O with Pnn(O) > τ .

Since we are only concerned about object O with Pnn(O) > τ in PNNT
queries, we do not need to compute the exact Pnn of the object if we can prove
the probability cannot exceed τ . In this case, we can safely prune away those
objects, hence reduce the computational cost.

Note that in our PNNT queries, we do not require that the probabilities of
an object’s region sum up to 1 (in other words, the pdf can be a partial pdf).
Suppose the sum is p, then 1− p is the missing probability that the object does
not exist at all. This is a more general case. We need to consider more when
pruning objects: Unless at least one object closer to q is sure to exist, an object
that is far from q still has a non-zero probability to be NN, thus cannot be
pruned away immediately as in [8].

The main contributions of our paper consist of the following: We proposed an
R-tree based index structure that can efficiently answer PNNT queries, which is a
normal R-tree index augmented with additional probability information so that
we can prune objects away without sacrificing the correctness of the results.
Furthermore, we designed global data structures to maintain and update the
current pruning status as we retrieve nodes from the R-tree. Our PNNT query
processing algorithm overcomes the limitation of previous NN papers with regard
to missing probabilities and is proven to be efficient by our experiments.

The rest of the paper is organized as follows: Section 2 introduces probabilis-
tic information that will be added to the R-tree index. Section 3 presents the
algorithms used in PNNT query processing, followed by the experimental results
in Section 4. Section 5 reviews the related work. Finally, we conclude our paper
and point out future work in Section 6.

2 Augmented R-tree Index

In this section, we describe our new R-tree index for the PNNT problem defined
in the previous section. We propose three types of augmentation to the normal
R-tree in order to answer the PNNT queries both effectively and efficiently. The
following information is added to the entries in an R-tree to facilitate query pro-
cessing: Absence probability (AP ), maximal probability (MP ) and the absence
probability bounds (AP -bounds). We first introduce each augmentation sepa-
rately, then show how to incorporate all of them into our index structure. In the
rest of the paper, we use τ to denote the PNNT query threshold.



2.1 Absence Probability (AP )

Definition 3. Pruning Circle: A circle Cq,r centered at query point q with a
radius r is called a pruning circle if for every object O lying outside Cq,r we have
Pnn(O) < τ .

The reason why Cq,r is called a pruning circle is that given Cq,r, we can safely
prune away all objects lying outside it when processing PNNT queries. Our goal
is to shrink the pruning circle as much as possible so that all objects outside it
can be pruned away immediately, leaving only a small portion of objects to be
further examined as NN candidates. Next we introduce absence probability for
our augmented R-tree index:

Definition 4. Absence Probability AP : Given a Minimum Bounding Rect-
angle (MBR) M in an R-tree, AP (M) is defined as the probability that none of
the objects contained in M is present. Likewise, for a circle C, AP (C) is the
probability that no object in C is present.

Moreover, we define maximum distance dmax(q,M) from query point q to
MBR M to be the maximum distance of all distances from q to M and similarly
minimum distance dmin(q,M) is the minimum distance of all distances from q
to M . We propose the following theorem that leverages AP (M) and dmax(q,M)
to prune away MBRs whose objects cannot be NN candidates.

Theorem 1. If AP (Mi) < τ for MBR Mi, then a circle Cq,r centered at query
point q with radius r = dmax(q,Mi) is a pruning circle.

Proof. Since there may be objects inside Cq,r that are contained in MBRs other
than Mi (denoted as Mj , as shown in Fig. 1), we can infer that

AP (Cq,r) ≤ AP (Mi) ·

( ∏
Mj ,j 6=i

AP (Mj)

)
≤ AP (Mi) < τ

For any object O in any MBR Mk outside Cq,r (dmin(q,Mk) ≥ r) to be NN to
q, there should be no object inside Cq,r, i.e., Pnn(O) ≤ AP (Cq,r) < τ . From
Definition 3 we conclude that Cq,r is a pruning circle.

Fig. 1 illustrates the pruning circle Cq,r when AP (Mi) < τ . The MBR Mk

outside the circle thus can be pruned away immediately. This pruning strategy
with respect to AP will be referenced later as the first-level pruning . We will
see in Section 2.3 a variation of it that is finer-grained.

2.2 Maximal Probability (MP )

Definition 5. Maximal Probability MP (M) for MBR M is defined as maxO∈M po,
where O is an object contained in M and po is the probability that O is present.
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Fig. 1. Pruning Circle Cq,r (AP (Mi) < τ)

The maximal probability MP is introduced for two purposes. Firstly, it can
be used for pre-pruning to prune away MBRs with MP < τ . Consider an
MBR M with MP (M) < τ . By definitions of MP and po, we know that po ≤
MP (M) < τ . Since the probability for O to be NN to q is at most the probability
of its presence, we have Pnn(O) ≤ po < τ for any object O in M . Hence we
can safely prune away the entire M . Secondly, MP (M) can also be used for
further pruning beyond the capability of the first-level pruning, which we call
the second-level pruning , which is supported by the theorem below:

Theorem 2. Let Mi be an MBR within a circle C. Let Mk be an MBR outside
C. If MP (Mk) ·AP (Mi) < τ , then for any object O in Mk, Pnn(O) < τ .

Proof. For any object O in Mk, we have Pnn(O) ≤ po · AP (C) ≤ MP (Mk) ·
AP (Mi) < τ , where po is the probability that O is present.

We have proved above the probability that any object O in Mk is NN to q
is less than τ , so we can safely prune away the entire MBR Mk. This is called
second-level pruning. In Fig. 1, if AP (Mi) ≥ τ instead, we cannot use the first-
level pruning to prune away Mk. However, if MP (Mk) · AP (Mi) < τ holds, we
can use the second-level pruning to prune Mk away.

2.3 AP -Bounds

Unlike AP introduced in Section 2.1 that stores the absence probability of an
entire MBR, AP -bounds store the absence probabilities of regions in the MBR
specified by the bounds. The goal of AP -bounds is to shrink the size of the
pruning circle as much as possible so that more MBRs outside the circle can be
pruned away. This is a fine-grained version of the first-level pruning in Section
2.1. Both methods require that we have a pruning circle in which the absence
probability is below τ .

The idea of probability bounds (e.g. x-bounds) is first proposed in [6] for range
queries with probability thresholds. In our paper, however, we use probability
bounds for PNNT queries.
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Definition 6. AP -bounds AP l
M (x) (left AP -bound) and AP r

M (x) (right AP -
bound) for MBR M are defined as a pair of lines intersecting with M such that
the absence probability of the region to the left of AP l

M (x) and to the right of
AP r

M (x) is no greater than the bounding probability x (0 ≤ x ≤ 1).

Furthermore, we define AP-distances dl
M (x) and dr

M (x) to be distances from
the left and right edges of MBR M to AP l

M (x) and AP r
M (x) respectively. We

require that AP -bounds be tight — they are pushed towards the left or right
edges of the MBR as much as possible while still satisfying Definition 6. This
ensures that AP -bounds are unique. AP -bounds can be represented using AP -
distances and the bounding probability x. For example, AP l

M (x) is represented
using distance dl

M (x) and x itself. Suppose O1, O2, and O3 are three objects
in MBR M , as shown in Fig. 2. Let the bounding probability be x, then the
AP -bounds of M ensures that the probability that none of the three objects
is present within the AP -bounds is no more than x. Note that the bounding
probability becomes larger as AP -bounds are pushed towards the edges, i.e.,
0.5 > 0.2 in Fig. 2.

Pruning with AP -bounds: We first find the set of AP -bounds with bound-
ing probability x < τ and as close to the edges of the MBR as possible. We let
the new radius of the pruning circle be the minimal distance from the query
point q to the AP -bound. Then all MBRs outside of this circle can be pruned
away. Pruning using AP -bounds instead of AP of an entire MBR has the advan-
tage that the resulting pruning radius is smaller, indicating that more MBRs are
likely to be outside of the pruning circle and thus can be discarded immediately
without further evaluation.

2.4 The Index Structure

Now that we have introduced all three kinds of information that we want to
leverage in PNNT query processing, we redesign the R-tree index structure by
adding all the information to the entries of the R-tree internal nodes. The con-
struction of the augmented R-tree index is also discussed in details.



There are multiple entries in an R-tree internal node, each of which has an
MBR (M) and a pointer (p) to a child node that stores information about all
smaller MBRs contained in M . We augment R-tree by adding the following
additional items to each entry of an internal node: i) AP ii) MP iii) left AP
bounds and rightAP bounds. Note that we keep a set of left and rightAP bounds
with different bounding probabilities x to suit queries of various thresholds. The
list of x’s is stored globally, each of which corresponds to a left and right pair of
AP bounds in the MBR entry.

When constructing the new index, we propagate the additional information
in MBR entries in a bottom-up fashion: The AP of an MBR at a higher level of
the R-tree can be obtained by simply multiplying AP s of all its child MBRs. Let
M1,M2, ...,Mm be the child MBRs of M . Then AP (M) =

∏m
k=1AP (Mk). In

contrast, the MP of MBR M is obtained by finding the maximum MP among its
child MBRs, i.e., MP (M) = maxm

k=1MP (Mk). To compute the left-AP -bounds
AP l

M (x) of M , we compute the AP distance dl
M (x) = maxm

k=1 d
l
Mk

(x) for each
bounding probability x. The right-AP -bounds are computed in the same way.
We call this method “Coarse Estimation Method” (CEM). Alternatively, we
have “Fine Estimation Method” (FEM), which leverages the AP hop function
to obtain a much finer estimation of AP -bounds. We compute AP hop functions
for all of M ’s child MBRs and deduce the hop function of M from them.

Definition 7. AP hop function is a function from AP -distance d to bounding
probability x, denoted as x = h(d). A hop function is with regard to an MBR M
if d is the distance from AP -bounds to M ’s bounds.

Note that for both left and right AP -bounds, we have a corresponding hop
function. Suppose M1 and M2 are two MBRs contained in M , as shown in Fig.
3. x11 · · ·x1m are the bounding probabilities of left AP -bounds (AP l

M1
) of M1.

Likewise, x21 · · ·x2m are the bounding probabilities of left AP -bounds (AP l
M2

)
of M2. Let h1 be the hop function of M1 and h2 for M2. Let (djk, xjk) be the
points on hj , where j ∈ {1, 2}, 1 ≤ k ≤ m, and djk is the distance from M ’s
left edge to Mj ’s AP -bound AP l

Mj
(xjk). Moreover, the AP -bounds for both

MBRs are ordered such that djk < djk+1(djm+1 = +∞, dj0 = 0). Then we write
function hj as follows:

hj(d) = xjk, if djk ≤ d < djk+1 (1)

Our goal is to compute M ’s hop function h from h1 and h2. The absence
probability of the region within the AP -bound AP l

M (x) with AP -distance at
least max(d1k1 , d2k2) is at most the product of absence probabilities within AP -
bounds AP l

M1
(x1k1) and AP l

M2
(x2k2), that is, AP l

M ’s bounding probability x ≤
x1k1 · x2k2 .

Having observed this property, we can obtain h from h1 and h2 as follows
(1 ≤ k1, k2 ≤ m):

h(d) = x1k1−1 · x2k2−1 if d ∈ [d1k1−1, d1k1) and d ∈ [d2k2−1, d2k2) (2)



Note that more than m AP-bounds for M can be computed from Equation
2. However, to be consistent with M1 and M2, we need to normalize function h
so that it has only m AP -bounds. This can be done in a number of ways. One
näıve solution is to keep the first m bounds and throw the others away. With
the help of hop functions, we get tighter AP -bounds and thus more MBRs could
be pruned away using first-level pruning.

3 PNNT Query Processing

Before presenting our PNNT query processing algorithm, we first introduce the
Global AP (GAP ) function that is essential for pruning.

3.1 GAP Function

GAP function maintains the global AP information for the query point q. Let
the distance to q be d. The definition of GAP function is as follows:

Definition 8. GAP function GAP (d) is the probability that no object exists
inside the circle Cq,d.

GAP is used to find and shrink the pruning circle as much as possible so
that all MBRs outside of the circle can be pruned away. The radius R of the
current pruning circle is maintained globally and decreases as more MBRs are
seen during the query processing. GAP is updated whenever a new MBR is
retrieved, whose absence probability contributes to GAP to make it more accu-
rate. The algorithm updateGAP has the details. We use M to denote an MBR
and M.AP (q.threshold) to denote the AP -bound of M with bounding proba-
bility no greater than the query threshold. For each point on GAP function, we
use d to denote the distance to query q and ap to denote GAP (d), the absence
probability of the circle Cq,d.

3.2 PNNT Query Processing Algorithm

Using the augmented R-tree index and the GAP function along with the prun-
ing techniques we have introduced so far, we give the PNNT query processing
algorithm here. The algorithm has two stages: Pruning stage and refining stage.
In the pruning stage, the algorithm prunes away nodes in the augmented R-tree
with the help of the GAP function. The goal of pruning is to dynamically update
GAP as we see more MBRs so that we can shrink the pruning circle accordingly.
The input of this stage is an augmented R-tree built upon all data items as well as
the query point itself. The output of this stage is a list of data items that are NN
candidates (obtained by applying pruning techniques) as well as non-candidates
that overlap the final pruning circle. The reason such non-candidates are also
returned is that they are useful in the refining stage for computing the exact NN
probability of the candidates — when computing the NN probability for a data



Algorithm 1 Update GAP
Require: The current GAP , the query point (q), the newly-seen MBR (M)
Ensure: The updated GAP

if M.ap < q.threshold then
set currentPoint.d to be the distance between q and M.AP (q.threshold)
if currentPoint.d == dmax(query,M) then
currentPoint.ap = M.ap

else
currentPoint.ap = q.threshold

end if
end if // choosing a GAP point given M ends here
if GAP is empty then

add currentPoint to GAP
else
savedAP = currentPoint.ap
insert currentPoint into GAP according to d, let the point before it be prevPoint
if currentPoint is not the first point of GAP then
currentPoint.ap = savedAp ∗ prevPoint.ap

end if
if there are points after currentPoint in GAP then

set their new ap to be the old ap times savedAp
end if

end if
find the first point (boundaryPoint) in GAP with its ap ≤ q.threshold
set the pruning radius R = boundaryPoint.d
discard all points in GAP with d > R

Algorithm 2 PNNT Query Processing
Require: The augmented R-tree (tree) for all data items, the query point (query)
Ensure: All data items with NN probability greater than query.threshold (results)
prune(tree.root, query)
for each node in non-discarded leaf-level nodes after pruning do

for each data item in node do
if item is marked as ‘c’ (candidate) or ‘k’ (non-candidate to be kept) then

add item to remains (non-discarded data items)
if item is marked as ‘c’ then

add item to candidates (NN candidates)
end if

end if
end for

end for // pruning stage ends here
for each item in candidates do
Pnn = computeNNProbability(item, remains, query)
if Pnn > query.threshold then

add item to results
end if

end for
return results // refining stage ends here



item, all items that are not definitely further to the query must be taken into
account [5]. The refining stage then decides whether a NN candidate is indeed
a query result by checking whether its exact NN probability is greater than the
threshold. The PNNT query processing algorithm is shown in Algorithm 2.

The details of the pruning algorithm (i.e. prune) are in Algorithm 3. The
input is the query point and the node in the tree where the pruning starts. Note
that we update the GAP function whenever we see a new MBR using algorithm
updateGAP introduced in Section 3.1. MarkMBRs (Algorithm 4) marks all MBRs
in the node as ‘c’, ‘k’ or ‘d’ according to the latest GAP function, where ‘c’
means NN candidates, ‘k’ means non-candidates that we need to keep for the
refining stage and ‘d’ means others to be discarded.

Algorithm 3 Prune
Require: A node in tree (node) to start pruning, query
Ensure: All non-discarded nodes with marked MBRs

for each MBR M in node do
updateGAP (M, query)

end for
markMBRs(node, query)
if node is a leaf then

return
end if
next = pickMBRtoExplore(node, query)
while next != NULL do
prune(next, query)
markMBRs(node, query)
next = pickMBRtoExplore(node, query)

end while

The nodes in the augmented R-tree are visited in a depth-first manner.
PickMBRtoExplore picks an MBR in the node from all that are marked ‘c’.
The corresponding child of the node will then be explored. The criteria for pick-
ing is to choose the MBR that is furthest from the query point, in the hope that
its children will be discarded soon.

4 Experimental Results

We performed our experiments on 1-dimensional data represented as intervals.
Each interval is the uncertain region of the data and its pdf is represented us-
ing histograms. The total probability p over the interval is either in (0, 1] or
in (0.5, 1], hence there is 1-p probability that the interval does not exist. The
threshold τ of the PNNT query is at least 0.1, assuming that the user is not
interested in small probabilities. All intervals are randomly generated within the
range (0, 10000] and the size of the interval is in [1, 10]. For each experiment,



Algorithm 4 Mark MBRs
Require: A node in tree (node) to mark its MBRs, query
Ensure: All MBRs in node are marked

for each MBR M in node do
if M is outside of the current pruning circle CR centered at query with radius R
then

mark M as ‘d’ // first-level pruning
else

mark M as ‘c’
if M.mp < query.threshold then

mark M as ‘k’ // pre-pruning
else

search in GAP for the last point satisfying GAP.d ≤ dmin(query,M)
if M.mp ∗GAP.ap < query.threshold then

mark M as ‘k’ //second-level pruning
end if

end if
end if

end for

we average the statistics over 10 randomly generated query points in (0, 10000].
The default values/ranges for data size n, threshold τ and total probability p
is 100000 (100K), 0.3 and (0, 1]. Our algorithm can handle arbitrary pdf repre-
sented by histograms. In the experiments, we generated data with either uniform
pdf (default) or Gaussian pdf. In the following experiments, we always take de-
fault values of parameters unless otherwise specified. We ran our experiments
(written in C++) on a PC with Intel T2500 2.00GHz CPU and 2.00GB main
memory.

Our goal is to evaluate the performance of our PNNT query processing al-
gorithm with different parameters presented below. We compared our algorithm
with the näıve algorithm that evaluates the exact NN probability for each data
item and then returns all items with NN probabilities greater than τ . As the data
size grows, the PNNT algorithm becomes more and more superior compared with
the näıve one. For 500 data items, the näıve algorithm takes over 14.5 s while
our algorithm takes no more than 3 ms, over 500 times faster. We also com-
pared the performances of the three pruning techniques: Pre-pruning (Prune0),
first-level pruning (Prune1) and second-level pruning (Prune2) (note that the
actual algorithm combines all three together). For each point on the figures, we
average its value over ten experiments with randomly generated query locations
and draw the confidence interval associated with the value. The experimental
results are as follows:

Effect of Data Size: We evaluated our algorithm by varying the data set
size n from 10000 to 100000. We computed the pruning percentage of our algo-
rithm by dividing the number of NN candidates (candidateCount) by n. Note
that candidateCount is obtained after the pruning stage of the algorithm. We
compared the pruning percentage when the total probability p ∈ (0, 1] and



p ∈ (0.5, 1]. In the former case, p is just a random probability while in the
latter case, p is above 0.5, indicating that the probability that the data item
exists is greater than the probability that it does not exist. Fig. 4 shows the
result: As data size grows, the pruning percentage also grows with a relatively
sharp increase when the data size turns from 10000 to 20000. Over 99.7% data
items are pruned away for both cases while a random p ∈ (0, 1] generally has a
higher pruning percentage than p ∈ (0.5, 1]. This might be due to the effect of
pre-pruning that prunes away all data items with p < 0.3 (τ = 0.3), which does
not work at all for p ∈ (0.5, 1]. We also evaluated the time cost of our algorithm
with regard to the pruning stage and the refining stage in Fig. 5. The time cost
increases as data size grows. The pruning time cost is always bigger than the
refining time due to the large data size (it takes longer to prune in the R-tree)
as well as the high pruning percentage of our algorithm (there are less than 200
candidates to be evaluated even when the size reaches 100000). The total time
cost (pruning and refining) is also shown in Fig. 5.
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0.6 1.9512 0.4584 2.4096 1.9512 0.4584
0.7 1.8761 0.4522 2.3283 1.8761 0.4522
0.8 1.5737 0.4064 1.9801 1.5737 0.4064
0.9 1.2399 0.3385 1.5784 1.2399 0.3385
Grand Total 1.825477778 0.619677778 2.445155556 1.825477778 0.619677778
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Fig. 7. Effect of Threshold on Time Cost

Effect of Threshold: We repeated the previous experiments with the data
size fixed at 100000 and the threshold varying from 0.1 to 0.9 in Fig. 6 and Fig. 7.



Unlike the time cost experiment when the data size changes, the cost decreases as
threshold increases. This is because we can prune much more when the threshold
is big, as most of the data items are unlikely to have a NN probability above
the big threshold. The pruning time is more than the refining time for the same
reason as before. For the pruning percentage experiment, we observed similar
results: The percentage increases as threshold becomes bigger and reaches as high
as 99.98% when τ = 0.9. The total probability p ∈ (0, 1] still results in more
pruning compared with p ∈ (0.5, 1] like before. We further compared the three
pruning techniques (Prune0, Prune1, Prune2) with the varying threshold in
Fig. 8. The result shows that Prune1 contributes the most of all three techniques
with a pruning percentage around 99.8%, followed by Prune0 and Prune2. As
threshold increases, Prune0 increases almost linearly when τ > 0.3. Prune1 stays
relatively same with high pruning percentage while prune2 increases slightly with
fluctuations.

Data with Gaussian PDF: So far we have experimented with data that
has a uniform pdf. We now show that our algorithm performs well for data with
Gaussian pdf too. Fig. 9 shows the pruning percentage of the three pruning
techniques over different thresholds. Compared with Fig. 8, we observe the sim-
ilar results: prune1 prunes most, followed by prune0 and prune2. The pruning
percentages of the three techniques are all above 94%.

0.393147428 0.014910474 0.707406971

Average of  prunePercentage Column Labels
Row Labels prune0 prune1 prune2 Grand Total
0.1 95.3047 99.8608 93.8758 96.3471
0.2 95.2901 99.8933 94.0846 96.42266667
0.3 95.0906 99.8845 93.8036 96.25956667
0.4 96.3486 99.9006 94.8152 97.02146667
0.5 96.7577 99.9031 93.5432 96.73466667
0.6 97.4991 99.9032 93.8262 97.07616667
0.7 98.2846 99.9129 94.7683 97.65526667
0.8 98.9465 99.9071 94.2035 97.6857
0.9 99.4338 99.9041 94.3809 97.90626667
Grand Total 96.99507778 99.89662222 94.14458889 97.0120963
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0.62333123 0.016256623 0.969687143

0.658194365 0.013607188 1.194806893
0.393147428 0.014910474 0.707406971
0.412057021 0.011621819 0.982113005
0.341319075 0.014895562 1.60195818
0.282094645 0.016400881 1.240161481
0.089095205 0.013076272 1.146424243
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Fig. 8. Pruning Techniques

0.801295451 0.009428679 0.369067428

Average of  prunePercentage Column Labels
Row Labels prune0 prune1 prune2 Grand Total
0.1 94.7041 99.8873 94.7974 96.46293333
0.2 94.4863 99.8952 94.6126 96.33136667
0.3 94.8324 99.8897 94.6274 96.44983333
0.4 95.3629 99.8999 94.4423 96.56836667
0.5 95.3833 99.9031 94.6551 96.64716667
0.6 95.4053 99.9071 94.8443 96.7189
0.7 96.2802 99.9167 94.8891 97.02866667
0.8 95.911 99.9142 94.7307 96.85196667
0.9 96.4164 99.9076 95.4468 97.25693333
Grand Total 95.42021111 99.90231111 94.78285556 96.70179259
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1.036252886 0.020088969 1.040882446
0.360533078 0.02530898 0.37368586
0.443790504 0.014940251 0.426725113
0.852580143 0.017239812 0.433025031
0.801295451 0.009428679 0.369067428
0.652546805 0.01083 0.392878282
0.325618113 0.022066566 1.670181414
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Fig. 9. Gaussian PDF

5 Related Work

Although the first probabilistic models were proposed as early as in the 1990’s [1,
9], it is not until recently when many efforts have been made to design database
systems that manage uncertainty [2, 4, 15]. Two major models for uncertainty
exist: Tuple uncertainty models and attribute uncertainty models. For tuple un-
certainty models [2, 4], each tuple is associated with a probability of its presence.
For attribute uncertainty models, a tuple always exists, but there may be one or
more uncertain attributes in the tuple with pdfs associated with them. Recently,



a database model is proposed for supporting pdf attributes that can handle
both attribute and tuple uncertainty, which considers intra-tuple dependencies
(captured by dependency sets) as well as inter-tuple dependencies (captured by
history) [16].

In parallel to uncertainty modeling, much work has been done on index-
ing and querying uncertain data, including indexing for probabilistic threshold
queries [7], indexing uncertain categorical data [14], processing range queries and
PNN queries [10, 5], processing ranked queries [17, 12], etc. However, little work
has been done on indexing and querying uncertain data with both attribute and
tuple uncertainty which are unified in the model of [16]. In our paper, we pro-
posed an efficient algorithm for processing PNNT queries. [5] gives an algorithm
for PNN, but only prunes objects when their NN probability is 0. [8] proposed
the concept of the “constrained PNN query” with a probability threshold and an
error tolerance, which can be leveraged to prune objects away that cannot meet
the threshold/tolerance requirement, thus saving many expensive computations
of the exact NN probabilities. The authors followed the attribute uncertainty
model and assumed that the probability of an object being in a closed region
always adds up to 1, i.e., there is no tuple uncertainty – the object always ex-
ists. Our approach overcomes this limitation and can efficiently process PNNT
queries when objects have both attribute and tuple uncertainty.

6 Conclusions

In this paper, we gave an efficient algorithm to process PNNT queries for un-
certain data with missing probabilities, which is a problem that has not been
addressed by any previous paper. Since data items that are close to the query
point may not exist in this case, it is harder to prune away items that are further
away (it still has a chance to be the NN). We designed an augmented R-tree in-
dex specifically for such queries. Each MBR is now associated with probability
information such as MP , AP , and AP bounds to facilitate pruning. We further
introduced a global data structure called GAP function to dynamically capture
the decreasing of AP within the pruning circle. With this fine-grained AP in-
formation, we can apply our pruning techniques to prune away a large number
of nodes in the R-tree. Our experiments proved the efficiency of the algorithm –
over 90% data items can be pruned away, leaving only a small portion of data
to be further examined as PNNT results.
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