
Efficient Join Processing over Uncertain Data∗

Reynold Cheng
Department of Computing

Hong Kong Polytechnic
University

Hung Hom, Hong Kong
csckcheng@comp.polyu.edu.hk

Sarvjeet Singh
Department of Computer

Science
Purdue University

West Lafayette, Indiana, USA
sarvjeet@cs.purdue.edu

Sunil Prabhakar
Department of Computer

Science
Purdue University

West Lafayette, Indiana, USA
sunil@cs.purdue.edu

Rahul Shah
Department of Computer

Science
Purdue University

West Lafayette, Indiana, USA
rahul@cs.purdue.edu

Jeffrey Scott Vitter
Department of Computer

Science
Purdue University

West Lafayette, Indiana, USA
jsv@cs.purdue.edu

Yuni Xia
Department of Computer and

Information Science
Indiana University - Purdue

University Indianapolis
Indianapolis, Indiana, USA

yxia@cs.iupui.edu

ABSTRACT
In many applications data values are inherently uncertain. This in-
cludes moving-objects, sensors and biological databases. There has
been recent interest in the development of database management
systems that can handle uncertain data. Some proposals for such
systems include attribute values that are uncertain. In particular, an
attribute value can be modeled as a range of possible values, asso-
ciated with a probability density function. Previous efforts for this
type of data have only addressed simple queries such as range and
nearest-neighbor queries. Queries that join multiple relations have
not been addressed in earlier work despite the significance of joins
in databases. In this paper we address join queries over uncertain
data. We propose a semantics for the join operation, define proba-
bilistic operators over uncertain data, and propose join algorithms
that provide efficient execution of probabilistic joins. The paper
focuses on an important class of joins termed probabilistic thresh-
old joins that avoid some of the semantic complexities of dealing
with uncertain data. For this class of joins we develop three sets
of optimization techniques: item-level, page-level, and index-level
pruning. These techniques facilitate pruning with little space and
time overhead, and are easily adapted to most join algorithms. We
verify the performance of these techniques experimentally.

Categories and Subject Descriptors: H.2.4 Database Manage-
ment: Systems

General Terms: Algorithms, Performance

Keywords: Uncertainty Management, Joins, Imprecise data

∗Parts of this work were supported by Army Research Office
through grant DAAD19–03–1–0321 and National Science Foun-
dation through grants 0534702, 0242421 and 0415097.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

1. INTRODUCTION
While traditionally, databases have required data to be modeled

in terms of precise values, there are many applications where un-
certainty, or imprecision in values is inherent or desirable [4, 5, 14].
Consider, for example, scientific applications that record measure-
ments taken from sensors or other devices. These measurements
are many times inexact, with known degrees of errors. GPS de-
vices that give location information are known to have a Gaussian
distribution of error around the reported value. Similarly, microar-
ray data in biological experiments are known to have a Lorentzian
distribution of error. Sometimes, errors are introduced in order to
achieve scalability. Consider the case of sensor databases. It is
infeasible (due to resource constraints such as batteries and band-
width) to continuously monitor every single change in value for
every sensor. One solution to this problem while limiting the de-
gree of error is to allow each sensor to not send updates unless the
value has changed significantly, or a specified amount of time has
elapsed. In this model, called the dead-reckoning apporach [15],
the value of the sensor is correctly modeled as a range around the
last reported value. Finally, in a Location-Based Service applica-
tion, users may wish to provide approximate, imprecise locations
in order to preserve their privacy.

Given the need for managing uncertain data, several researchers
have recently proposed the development of database sytems that
manage uncertain data [4, 14, 5, 1]. There are two broad types of
data uncertainty that is defined in these works: tuple-uncertainty
and attribute-uncertainty. Tuple uncertainty refers to the uncer-
tainty that a given tuple is part of a database [4]. The tuple itself
is no different than regular database tuples. Attribute uncertainty
refers to the uncertainty in the value of a given attribute [14, 1].

Incorporating uncertainty into databases brings about many chal-
lenges including issues of query semantics, evaluation, and effi-
ciency. The problem of the semantics of query processing and ef-
ficient evaluation of queries for tuple uncertainty have been dis-
cussed in earlier work [4]. There has also been some work on sim-
ple types of queries (range and nearest-neighbors only) for databases
with attribute uncertainty [1, 2]. To the best of our knowledge, there
is prior work on more complex queries in the specific area of un-
certain attribute data. In this paper, we address the issue of joins
over databases with uncertain attributes.

As a more concerete example, consider a scientific application

where an equality join query is issued over two sets of temper-
ature values (obtained from two sensor networks in separate ge-
ographical regions) to discover the pairs of sensors that give the
same temperature value. Figure 1(a) shows two tables, A and B,
storing two attributes (ID, T emp), which represent the tempera-
ture values Temp recorded by sensors with names given by ID.
Suppose we would like to perform an equality join over the tem-
perature attributes to determine which pairs of entities in A and B
record the same temperatures. Joining pairs are shown connected
by a line in (a). This result is incorrect if we consider the true val-
ues of the sensors given by Figure 1(b): since the actual value for
A1 is different from that of B1, A1 should not be paired with B1.
Instead, A1 matches B2, where both temperature values equal to
11oF . Thus there is a false positive in the true result – (A1, B1)
is wrongly returned to the user. Figure 1(b) also shows that A2

should be matched with B3. Consequently, (A1, B2) and (A2, B3)
are not returned to the user, resulting in two false negatives. As we
can see, the join result returned by the database is significantly dif-
ferent from the actual result. If this result is further processed by
the application, the error may propagate in the analysis and invalid
conclusions/decisions may be made.

(a) Database
 Values

Table A Table B Join Result

(A1, B1)

ID Temp

A1

A2

A3

10

6

5

ID Temp

B1

B2

B3

10

9

7

(b) Actual
 Values

(A1, B2);
(A2, B3)

ID Temp

A1

A2

A3

11

7

5

ID Temp

B1

B2

B3

9

11

7

(c) Uncertain
 Values
 (PJQ)

(A1, B1), 0.1;
(A1, B2), 0.7;
(A2, B3), 0.8;
(A3, B3), 0.2

ID Temp

A1

A2

A3

[9,13]

[5,9]

[4,6]

ID Temp

B1

B2

B3

[8.5,9.5]

[10,12]

[5.5,8.5]
0.8

0.7

0.1

0.2

(d) Uncertain
 Values
 (PTJQ,

p = 0.7)

(A1, B2);
(A2, B3)

ID Temp

A1

A2

A3

[9,13]

[5,9]

[4,6]

ID Temp

B1

B2

B3

[8.5,9.5]

[10,12]

[5.5,8.5]
0.8

0.7

Figure 1: Illustrating join over uncertain data.

To avoid incorrectness in query answers, the idea of using an
uncertainty model rather than a single numerical value to describe
an item was proposed in [1]: each item is associated with a range
of possible values and a probability density function (pdf) that de-
scribes the probability distribution of the value within the range.
To address the above uncertainty problem, an uncertainty interval
can be a fixed bound d, which is a result of negotiation between
the database system and the sensor; if the system does not receive
any update from the sensor, it can assume that the sensor’s current
value must be between [v − d, v + d], where v is the value of the
sensor last reported to the server [15]. The pdf of the sensor value
within the range may be obtained through machine learning tech-
niques [5]. By incorporating the notion of uncertainty into data
values, imprecise, rather than exact, answers are generated. Each
join-pair is associated with a probability to indicate the likelihood
that the two tuples are matched. We use the term Probabilistic Join

Queries (PJQ) to describe these types of joins over uncertain data.
Figure 1(c) illustrates the idea of PJQ. Each temperature attribute

stores a range that encloses the data value, together with a pdf that
describes the distribution (not shown here). Each tuple-pair is as-
sociated with a probability that indicates the likelihood of the join.
Notice that both (A1, B2) and (A2, B3) are now included in the re-
sult. In this example, the false negative problem vanishes. Also, we
have a 0.7 and 0.8 confidence for these pairs. On the other hand, the
false positive, (A1, B1), remains in the result, and a new false pos-
itive, (A3, B3), is introduced. However, both false positives have a
relatively low probability (0.1 and 0.2 respectively), suggesting to
the user that these two matches are less likely to occur.

How are these probability values computed? To answer this, we
must understand the semantics of join operators for uncertainty.
The notions of equality and inequality have to be extended to sup-
port uncertain data. We will address the new definitions of com-
parison operators for the uncertain data model. Furthermore, we
demonstrate how it is possible to relax the requirements for com-
parison operators, in order to allow more flexibility in specifying
accuracy requirements of joins over uncertainty.

Another dimension of our study deals with the performance is-
sues of joins over uncertainty. We observe that although the answer
probabilities are useful, it is not always necessary to know their ex-
act values. Often the user is only concerned about whether the
probability value exceeds a given threshold. Moreover, the result
of a query must return a table as a result. In a regular database
model (with no uncertain attributes) the presence of a join pair in
the result is boolean depending upon whether or not the join condi-
tion is satisfied. For join conditions over uncertain data, the result
is generally not boolean, but probabilistic. We propose to solve this
problem by associating with each condition over uncertain data, a
cut-off threshold. If the probability that the join pair meets the join
condition exceeds the threshold, it is included in the result, other-
wise the pair is not included. This threshold can either be user-
specified or a system parameter.

We term this variant of probabilistic join queries, which only
returns tuple pairs when their probabilities exceed a certain thresh-
old as Probabilistic Threshold Join Queries (PTJQ). An example
of PTJQ is shown in Figure 1(d), where we assume the user is
only interested in tuple pairs whose probabilities exceed threshold
p = 0.7. As a result, the two pairs with low probability values
(0.1 and 0.01) are not included in the answer. Compared with Fig-
ure 1(c), PTJQ returns fewer false negatives.

In this paper we focus on threshold joins and develop various
techniques for the efficient (in terms of I/O and CPU cost) algo-
rithms for PTJQ. In particular, we develop three pruning techniques:
(1) item-level pruning, where two uncertain values are pruned with-
out evaluating the probability; (2) page-level pruning, where two
pages are pruned without probing into the data stored in each page;
and (3) index-level pruning, where all the data stored under a sub-
tree is pruned. These techniques incur a small space and time over-
head, and can be augmented to existing join algorithms easily.

As a summary of our contributions, we extend the semantics of
join operators over exact, single-valued data to uncertain data. We
present the concept of probabilistic join queries (PJQ) and illus-
trate how they can be evaluated. We illustrate how probabilistic
threshold join queries (PTJQ), a variant of PJQ that constrains on
the answers based on their probability values, can improve the join
performance significantly based on various pruning techniques. We
also perform evaluations to test our methods.

In Section 2, we define the uncertainty model of data assumed in
this paper, and various notions of join operators over uncertainty.
Section 3 presents item-level pruning techniques for each join op-

erator. In Section 4, we study how the performance of join can be
further improved through page-level and index-level pruning tech-
niques. We present our experimental results in Section 5. Related
work is discussed in Section 6, and Section 7 concludes the paper.

2. COMPARING UNCERTAIN VALUES
In this section we describe the uncertainty model, and definitions

of comparison operators for uncertainty.

2.1 Probabilistic Uncertainty Model
To capture the uncertainty of dynamic entities such as tempera-

ture, pressure and location values, a data scheme known as proba-
bilistic uncertainty model was proposed in [1]. This model assumes
that each data item can be represented by a range of possible values
and their distributions. Formally, assume each tuple of interest con-
sists of a real-valued attribute a. Note that a is treated as a continu-
ous random variable, and it is assumed that each uncertain attribute
value is mutually independent. The probabilistic uncertainty of a
consists of two components

DEFINITION 1. An uncertainty interval of a, denoted by a.U ,
is an interval [a.l, a.r] where a.l, a.r ∈ �, a.r ≥ a.l and a ∈ a.U .

DEFINITION 2. An uncertainty pdf of a, denoted by a.f(x),
is a probability distribution function of a, such that

R a.r

a.l
a.f(x)dx =

1 and a.f(x)=0 if x /∈ a.U .

Notice that a.F (x) = 0 if x < a.l and a.F (x) = 1 if x > a.r.
The exact realization of this model is application-dependent. For

example, in modeling sensor measurement uncertainty, a.U is an
error bound and f(x) is a Gaussian distribution. In modeling mov-
ing objects, Wolfson et al. [15] suggested a bounded uncertainty
model where each moving object only reports its location if its cur-
rent location deviates from its reported location by more than d, so
that at any point of time the uncertainty of the location value stored
in the system has uncertainty of not more than d.

The specification of uncertain pdf is also application-specific.
For convenience, one may assume that the uncertainty pdf f(x)
is a uniform distribution i.e., f(x) = 1

a.r−a.l
for a ∈ [a.l, a.r];

essentially, this implies a “worst-case” scenario where we have no
knowledge of which point in the uncertainty interval possesses a
higher probability. In sensor networks, Deshpande et al. [5] as-
sumed the reading of each sensor node is a Gaussian distribution
parameterized with a mean and variance value. They also sug-
gested that these Gaussian distributions can be constructed through
machine learning algorithms, such as [11]. Another example is a
triangular distribution.

Note that although the uncertainty model described here is pre-
sented for one-dimensional data, its concept can be extended to
multiple dimensions.

2.2 Uncertainty Comparison Operators
In order to evaluate join conditions over uncertain attributes, it

is first necessary to define operators for this data type. Consider
the equality of two uncertain-values a and b. Since a and b are
not single values, traditional notions of comparison operators (such
as equality and inequality) cannot be used. Due to the range of
possible values for each data item it is not immediately obvious
whether the two are equal in value or not. If there is no overlap
in their range, clearly they cannot be equal. However, if there is
an overlap, there is the possibility that the two could be equal. We
would like to determine the likelihood of them being equal. In this
section, we extend the definitions of common comparison operators

b
b.l b.r

a
a.ra.l

a.f(x0)

b.f(x0)

c

c

Figure 2: Comparing uncertain values.

to support uncertain values. In particular, we express “imprecision”
in these operators in terms of probability values.

To understand “equality” for uncertain data, consider Figure 2
where the overlap between a.U and b.U is [a.l, b.r]. A first thought
is that the probability a equals to b is simply

R b.r

a.l
a.f(x)b.f(x)dx.

However, this is incorrect: both a.f(x) and b.f(x) are continuous
functions, thus the probability that a and b are equal to x0 is zero.
Consequently, the probability of equality is always zero, and a and
b can never be equal.

Given that the exact values for these data items are not known,
the user is more likely to be interested in them being very close
in value rather than exactly equal. Naturally, how close they are
should be determined by the user. Based upon this observation,
we define equality using a parameter, called resolution (c), as: a is
equal to b if they are within c of each other i.e., b − c ≤ a ≤ b + c
or a − c ≤ b ≤ a + c:

DEFINITION 3. Equality (=c): Given a resolution c, a is equal
to b with probability

P (a =c b) =

Z ∞

−∞
a.f(x) · (b.F (x + c)− b.F (x− c))dx

Essentially, a is equal to b when a = x0 if b is in the range
[x0 − c, x0 + c], with a probability of b.F (x0 + c)− b.F (x0 − c),
or

R x0+c

x0−c
b.f(x)dx. Figure 2 illustrates this definition of equality,

where we can see a and b only join in [a.l − c, b.r + c]. Let la,b,c

be max(a.l − c, b.l − c) and ua,b,c be min(a.u + c, b.u + c). For
the case that the two intervals are within distance c of each other,
Definition 3 can be rewritten as:

P (a =c b) =

Z ua,b,c

la,b,c

a.f(x)(b.F (x + c)− b.F (x− c))dx (1)

where the overlap of a.U and b.U is given by [la,b,c, ua,b,c]. We
assert without proof that our definition of equality is symmetric i.e.,
P (a =c b) yields the same value as P (b =c a).

Notice that P (a =c b) is zero when b.r + c < a.l or a.r + c <
b.l. This indicates that a and b have no chance of being equal.
Based upon the definition of equality, we can define Inequality as
follows:

DEFINITION 4. Inequality (�=c): Given a resolution c, a is not
equal to b with probability P (a �=c b) = 1−R ∞

−∞ a.f(x)·(b.F (x+

c) − b.F (x − c))dx.

To address the question “Is a greater than b?”, let us look at Fig-
ure 2. In [b.r, a.r], b cannot be larger than a, since b.f(x) is 0
when b > b.r. Thus if a is within [b.r, a.r], it is larger than b with
probability

R a.r

b.r
a.f(x)dx, or 1 − a.F (b.r). At any point x0 in-

side [a.l, b.r], a is larger than b with a probability a.f(x0)b.F (x0),
where b.F (x0) is the probability that b is less than x0. There-
fore, in [a.l, b.r], the probability that a is larger than b is given
by

R b.r

a.l
a.f(x)b.F (x)dx. There is no need to consider [b.l, a.l],

because b is always less than a when b is in this region. To sum up,
the probability that a is larger than b in Figure 2 is:

Z b.r

a.l
a.f(x)b.F (x)dx + 1− a.F (b.r)

Upon considering all possible scenarios of overlap between a.U
and b.U , we obtain the definition of “>”:

DEFINITION 5. Greater than (>): a > b with probability
P (a > b)

=

(R b.r
max(a.l,b.l)

a.f(x)b.F (x)dx + 1− a.F (b.r) a.l≤ b.r<a.rR a.r
max(a.l,b.l) a.f(x)b.F (x)dx b.l≤a.r≤b.r

For the case that a lies entirely to the left of b, i.e. a.r < b.l,
P (a > b) = 0. Also, for the case that a lies entirely to the right of
b, i.e. a.l≥b.r, P (a > b) = 1.

Note that in a continuous-valued domain, P (a > b) is the same
as P (a ≥ b) because a can never be exactly equal to b. In the
sequel we will not discuss a ≥ b.

In a similar manner, we can redefine < as follows.

DEFINITION 6. Less than (<): a < b with probability P (a <
b)

=

(R b.r
a.l a.f(x)(1 − b.F (x))dx b.l< a.l≤b.r

a.F (b.l)+
R min(a.r,b.r)

b.l a.f(x)(1−b.F (x))dx a.l≤b.l≤a.r

Again, for the case that a lies entirely to the left of b, i.e. a.r <
b.l, P (a < b) = 1. Also, for the case that a lies entirely to the
right of b, i.e. a.l≥ b.r, P (a < b) = 0. Also, since P (a < b) is
the same as P (a ≤ b), and so we will not discuss a ≤ b.

We can see from that comparison over uncertainty is imprecise.
The degree of imprecision, represented by probability values, in-
dicates the confidence of the comparison result. For example, if
P (a > b) = 0.01, then a is unlikely to be greater than b.

It is worth mentioning that the definitions of comparisons for
uncertainty with continuous uncertainty pdfs can be extended to
support discrete pdfs.

2.3 Comparing Uncertainty with Certainty
Some situations may require the join of uncertain values with

“certain” values. For example, a user can join the current loca-
tions of people with locations of buildings (where the locations are
fixed), in order to find out which persons are in which buildings. In
general, operators between an uncertain value a and a certain value
v ∈ � can be defined as:

P (a =c v) =

Z v+c

v−c
a.f(x)dx = a.F (v + c)− a.F (v − c)

P (a �=c v) = 1− P (a =c v) = 1− a.F (v + c) + a.F (v − c)

P (a > v) = 1− a.F (v)

P (a < v) = a.F (v)

which can be treated as special cases for the definitions of uncer-
tainty operators.

2.4 Probabilistic Join Queries
We can now formulate the join problem. Suppose we have two

tables R and S containing m and n tuples respectively. Both tables
contain an uncertain attribute on which the join will be performed.
We name the uncertain attribute of the ith row as Ri for table R,
and as Si for table S. Then the Probabilistic Join Query (PJQ) is
defined as follows.

DEFINITION 7. Given an uncertainty comparator θu (where θu

is any one of =c, �=c, >, <), a Probabilistic Join Query (PJQ)
returns all tuples (Ri, Sj , P (RiθuSj)) where i = 1, . . . , m, j =
1, . . . , n and P (RiθuSj) > 0.

Essentially, a PJQ returns join pairs with a non-zero probability
of meeting the join condition alongwith the associated probability.
Notice that the probability returned by the join is in effect the prob-
ability of the correspoding tuple being part of the join result table.
Thus the result of a PJQ over a table with uncertain attribute data is
a table with tuple uncertainty. Since the model we have considered
for uncertainty does not incorporate tuple uncertainty, this result
falls outside the model. This is not desirable since we would like
to have a closed model in order to enable query composibility.

There are two alternatives for addressing this problem. The first
is to treat the probability simply as another attribute of the query
result. The new attribute is intrinsically defined with the domain
of probability values. This requires users to either be aware that
a new attribute will be added, or to explicitly add the probability
attribute in their SELECT clauses. The second alternative is not
to generate tuples with probabilistic values. Instead, each tuple is
either part of the result or not. In this case, we have to convert
each probabilitic comparison operator into a boolean comparison
operator. This is achieved through the specification of a cut-off
threshold probability. With this minor change, we define a join to
be Probabilistic Threshold Join Query (PTJQ). It has an additional
constraint that only join pairs whose probabilities exceed a user-
defined threshold are returned.

DEFINITION 8. Given an uncertainty comparator θu (where θu

is any one of =c, �=c, >, <), a Probabilistic Threshold Join Query
(PTJQ) returns all tuples (Ri, Sj) such that i = 1, . . . , m, j =
1, . . . , n, and P (RiθuSj) > p, where p ∈ [0, 1] is called the prob-
ability threshold.

A PTJQ only returns join pairs that have probabilities higher
than p. Another difference from PJQ is that PTJQ only returns
the pairs, (Ri, Sj), but not the actual probability values. In the se-
quel, we will explain how these two differences are exploited for
performance improvement.

3. EVALUATING PTJQ WITH INTERVAL
JOIN

To evaluate a PTJQ, common methods like block-nested-loop
join and indexed-loop can be used. The advantage of these algo-
rithms is that they have been implemented in typical database sys-
tems, hence the system requires little modification to support joins
over uncertain data. However, we will demonstrate that these join
techniques can be improved by a number of novel techniques.

Figure 3 illustrates a possible approach of using traditional join
algorithms for processing uncertainty. As shown in Step 2, the main
idea is to join the uncertainty intervals with an interval-join algo-
rithm, and store the possible candidates are stored in a set, C. Sub-
sequently, the pdf/cdf information is used to calculate the probabil-
ity of each candidate pair, and those that have probability greater
than p are retained in the result (Step 3). In the rest of this section,
we examine these two steps in more details.

The exact method used in Step 2 depends on the type of the com-
parison operator. For equality over two uncertain intervals Ri.U
and Sj .U , we can eliminate intervals that do not overlap after con-
sidering the resolution c (i.e., pairs that satisfy Ri.r + c < Sj .l
or Sj .r + c < Ri.l). According to Definition 3, these tuples have
zero chance of being paired up. Thus, any I/O-efficient overlap

join algorithms over intervals (e.g., [7]) can be used. For >, we can
immediately eliminate (Ri, Sj) if Ri.r < Sj .l, and we can derive
similar conditions for <. In general, based on the uncertainty op-
erator and uncertainty intervals, we may derive pruning conditions
and choose an efficient I/O join algorithm to facilitate pruning.

Input
R, S /* tables containing common uncertainty attributes */
θu /* uncertainty join operator */
p /* probability threshold of PTJQ */

Output
(Ri, Sj) that satisfies P (RiθuSj) > p

Begin
1. Let A← φ /* A is the answer of PTJQ */
2. Let C ← {(Ri, Sj)| where (Ri, Sj) are results returned

by an interval join algorithm over Ri.U and Sj .U }
(For =c and �=c, join over [Ri.l−c,Ri.r+c],
[Sj .l−c, Sj .r+c])

3. ∀(Ri, Sj) in C
i. if P (RiθuSj) > p then A← A

S
(Ri, Sj)

End

Figure 3: Evaluating a PTJQ with an interval join.

3.1 Item-Level Pruning
The set C of candidate pairs (Ri, Sj), produced in Step 2, is

further refined in Step 3. The refinement process can be done by
directly computing the join probability, P (RiθuSj) for every pair
of (Ri, Sj); only those larger than p are retained. The exact way
of computing this probability depends on the type of uncertainty
pdf. For uniform pdf, a closed-form formula can be derived. For
Gaussian distribution, the join probability may be implemented by
a table lookup. For an arbitrary pdf, P (RiθuSj) may not be in
closed-form; the join probability can be computed with (relatively
expensive) numerical integration methods.

We develop a set of techniques to facilitate the evaluation of Step
3. These methods do not compute P (RiθuSj) directly. Instead,
they establish pruning conditions that can be checked easily to de-
cide whether (Ri, Sj) satisfy the query. They are applicable to
any kind of uncertainty pdf, and do not require the knowledge of
the specific form of P (RiθuSj). They are thus convenient for de-
veloping an uncertain database system that supports a wide range
of uncertainty pdfs. Moreover, they form the basis of discussions
of other pruning techniques in later sections. We term these tech-
niques “item-level-pruning”, since pruning is performed based on
testing a pair of data items. Let us now discuss the pruning criteria
for each operator.

For Equality and Inequality, we establish the following lemma:

LEMMA 1. Suppose a and b are uncertain-valued variables and
a.U ∩ b.U �= φ. Let la,b,c be max(a.l − c, b.l − c) and ua,b,c be
min(a.r + c, b.r + c). Then,

• P (a =c b) is at most

min(a.F (ua,b,c) − a.F (la,b,c), b.F (ua,b,c) − b.F (la,b,c))
(2)

• P (a �=c b) is at least

1−min(a.F (ua,b,c)−a.F (la,b,c), b.F (ua,b,c)−b.F (la,b,c))
(3)

Lemma 1 enables us to quickly decide whether a candidate pair
(Ri, Sj) ∈ C should be included into or excluded from the answer,

since uncertainty cdfs are known and Equations 2 and 3 can be
computed easily. For equality, the lemma allows us to prune away
(Ri, Sj) when Equation 2 is less than p; for inequality, we can
immediately claim that (Ri, Sj) is the answer when Equation 3 is
larger than p. The proof of Lemma 1 is detailed in [3].

For Greater than and Less than, we have the following Lemma 2.

LEMMA 2. Given uncertain-valued variables a and b:

• For a > b,

1. If a.l ≤ b.r < a.r, P (a > b) ≥ 1− a.F (b.r).

2. If a.l ≤ b.l ≤ a.r, P (a > b) ≤ 1− a.F (b.l).

• For a < b,

1. If a.l ≤ b.l ≤ a.r, P (a < b) ≥ a.F (b.l).

2. If b.l < a.l ≤ b.r, P (a < b) ≤ a.F (b.r).

Again, the proof of Lemma 2 is described in [3]. To understand
how this lemma facilitates pruning for >, notice that we can im-
mediately include (Ri, Sj) in the answer if Ri.l ≤ Sj .r < Ri.r
and 1 − Ri.F (Sj .r) ≥ p, since by the first rule of the lemma
P (Ri > Sj) has to be larger than p. Observe that (Ri, Sj) can
also be included in the answer if Ri.l > Sj .r. On the other hand,
the second rule of the lemma allows (Ri, Sj) to be excluded from
the answer, if the right side expression of P (a > b) has probability
value less than p. Notice that (Ri, Sj) can also be excluded from
the answer if Ri.r < Sj .l. The rules for < in Lemma 2 can be
used for pruning in a similar manner.

Given that the pdfs of the uncertain values are known, the above
lemmata allow us to perform a constant-time check to decide whether
P (RiθuSj) has to be evaluated. Thus, for the price of a small over-
head, we may be able to avoid the evaluation of actual probabilities
in Step 3, which can be expensive. From now on, we assume that
checks based on the above lemmata are performed to process the
predicate P (RiθuSj) in Step 3. In Section 5, we experimentally
examine the effectiveness of the framework presented in Figure 3,
where we study two common interval join algorithms: block nested
loop join (BNLJ) and indexed nested loop join (INLJ).

Notice that the interval-join operation, performed in Step 2, can
generate a lot of candidate pairs that are actually not part of the
answer (i.e., their probabilities are less than p) The key problem
with Step 2 is that it uses uncertainty intervals as the only prun-
ing criterion. In the next section, we examine algorithms that use
both uncertainty intervals and uncertainty pdfs for pruning, so that
a smaller candidate set is produced. In some of these methods, the
I/O performance is improved too.

4. UNCERTAINTY-BASED JOINS
Interval joins may not be the best solution because they do not

utilize uncertainty pdfs. We now present join algorithms that are
tailored for uncertainty. We discuss how to prune at the page level
for different uncertainty operators, and how this page-level pruning
can be realized in join algorithms.

The discussion focuses on the equality (=c) and greater than
(>) operators. The other operators are similar to these and are thus
not discussed in detail.

4.1 The Uncertainty Bounds
For database joins like the block-nested-loop join and the indexed-

loop-join, the unit of retrieval is a page. Suppose we are given two
pages from R and S respectively. To perform a join between the
uncertain values contained in these two pages, a simple approach

is to consider all pairs of values in the two pages. This can be
time-consuming, because a page of a modest size can contain many
uncertain values1. Our goal is “page-level” pruning: with a small
storage overhead, it can avoid examining the page contents.

The idea of using a small overhead to facilitate the pruning of
uncertain values was first proposed in [2] to answer probabilistic
threshold range queries – essentially a range query where only un-
certain data items that satisfy it with a probability higher than a
user-defined threshold are reported. The main idea is to augment
some tighter bounds (x-bound) in each node in an interval R-tree.
Each x-bound is a pair of bounds that are calculated based on the
properties of the uncertainty pdfs associated with the entries stored
in that node. Since an x-bound is potentially tighter than the Min-
imum Bounding Rectangle (MBR), the pruning power can be in-
creased. In this paper, we borrow the idea of x-bound to facilitate
page-level joins. Based on the definition of x-bounds for a tree
node in [2], we generalize the definition of x-bound for a page:

DEFINITION 9. Given 0 ≤ x < 1, an x-bound of a page B
consists of two values, called left-x-bound (B.l(x)), and right-x-
bound (B.r(x)). For every uncertain value a stored in B, two con-
ditions must hold:

• If a.l < B.l(x), then
R B.l(x)

a.l
a.f(y)dy ≤ x.

• If a.r > B.r(x), then
R a.r

B.r(x)
a.f(y)dy ≤ x.

Essentially, we require that every uncertain attribute stored in a
page must have no more than a probability of x of being outside
either the left-x-bound or the right-x-bound. We also assume that
x-bounds are “tight”, i.e., the left-x-bounds (right-x-bounds) are
pushed to the right (left) as much as possible. To illustrate, Fig-
ure 4 shows a page storing two uncertain attributes, a and b. As
we can see, a has a probability less than 0.1 and 0.3 of lying to
the left of the left-0.1-bound and left-0.3-bound respectively, i.e.,R B.l(0.1)

a.l
a.f(y)dy ≤ 0.1 and

R B.l(0.3)

a.l
a.f(y)dy ≤ x. Similarly,

a cannot have a probability of over 0.3 of being outside the right-
0.3-bound. Finally, all the uncertainty intervals must be fully en-
closed by the 0-bound, which is akin to the MBR of an index node.

left-0.3-bound right-0.3-bound
left-0.1-bound right-0.1-bound

a

b

left-0-bound right-0-bound

≤ 0.3≤ 0.3

≤ 0.3

≤ 0.1

l u

Figure 4: Pruning with x-bounds.

The major purpose of the x-bound is to facilitate pruning for
probabilistic threshold range queries. Suppose a range query has
a lower bound l, upper bound u and probability threshold p. As
1For example, if an uncertain attribute uses 8 bytes to store its un-
certainty interval, 8 bytes to specify the uniform uncertainty pdf
and cdf, a 4K page can store 256 items. Joining values in two
pages then requires examining 2562 = 65536 pairs.

shown in Figure 4, if p is larger than 0.4, we are immediately guar-
anteed that none of the uncertain attributes can satisfy the query:
each attribute has a probability of less than 0.3 of being located in-
side [l, u]. We will explain how x-bounds are used to prune in order
to process joins effectively.

We now discuss the implementation of uncertain items and x-
bounds in a page. For pdf and cdf, we store the symbol of the
type of the distribution, and the parameters relevant to that distri-
bution. For example, if the pdf is Gaussian, then the pdf can be a
pair of values (mean, variance), and the cdf may be approximated
by a histogram. To implement the x-bounds, we store a table V
on the same page, where Vi is a tuple of the form (l, r) for stor-
ing the left-Wi-bound and right-Wi-bound. The values of Wi’s
(i = 1, . . . , |Wi|) are stored in an external table W , sorted in as-
cending order of Wi’s. Our join algorithms require 0-bounds to be
stored, with W1 equal to 0, and [V1.l, V1.r] representing the posi-
tion of the 0-bound. The total space cost of V and W is O(|W |),
which is usually small since only a few x-bounds are stored.

To insert an item to the page, we first compute the x-bound of
the item. This is usually an inexpensive one-time cost. If the uncer-
tainty pdf is a standard distribution (e.g., uniform), the x-bounds
are readily obtained. For an arbitrary pdf (e.g., represented by a
histogram), its x-bounds can be derived by scanning the histogram
once. The x-bound of the page is then expanded to accommodate
the new item.

Given a page B with uncertainty tables, we now present two
algorithms (Figure 5) to decide if any uncertain attributes have a
probability higher than p of satisfying a range query. Algorithm
CheckLeft checks the range query against left-x-bounds while
Algorithm CheckRight employs right-x-bounds for checking.
They use the idea illustrated in Figure 4 for pruning, and we state
without proof the following lemma.

LEMMA 3. Given a range query Q with interval [l, u] and prob-
ability threshold p, if CheckLeft or CheckRight returns FALSE,
no uncertain attribute in B can satisfy Q with probability higher
than p.

These two checking routines form the fundamental building blocks
for the page-level join operators. They are usually very efficient
since only a few x-bounds need to be stored and W is small.

Input
[l, u] /* Lower and upper bound of range query Q */
p /* probability threshold of range query */
B /* Page with table B.V */
W /* Global table storing values of x for x-bounds */

Output
FALSE: All intervals in B are guaranteed to fail Q,
TRUE otherwise.

(a) CheckLeft(l, u, p,B, W) /* prune using left-x-bounds */
1. for i = 1, . . . , |W | do

(i) if u < B.Vi.l and Wi < p then
(a) return FALSE

2. return TRUE
(b) CheckRight(l, u, p, B, W) /* prune using right-x-bounds */

1. for i = 1, . . . , |W | do
(i) if l > B.Vi.r and Wi < p then

(a) return FALSE
2. return TRUE

Figure 5: CheckLeft and CheckRight

4.2 Page-Level Equality Join
Using CheckLeft and CheckRight, a page-level equality

join can be constructed as follows. Figure 6 illustrates EquiJoin,
which returns PRUNE to indicate that two given pages from R and
S do not contain any join pairs with probability over p of being
equal, in which case the two pages can be pruned without further
investigation. EquiJoin returns CHECK to indicate that there is
a possibility that some pairs satisfying the conditions exist which
results in a pairwise evaluation of the values in the pages R and S.

Input
BR /* Page (with uncertainty bounds) from table R */
BS /* Page (with uncertainty bounds) from table S */
W /* Global table storing values of x for x-bounds */
c /* Resolution of equality */
p /* probability threshold of equality join */

Output
(i) PRUNE: ∀Ri ∈ BR, Sj ∈ BS ,it is certain that P (Ri =c Sj) < p,
(ii)CHECK otherwise.

EquiJoin(BR , BS , W, c, p)
1. if (NOT(CheckLeft(BR.V1.l− c, BR.V1.r + c, p, BS , W))) or

(NOT(CheckRight(BR.V1.l− c, BR.V1.r + c, p, BS , W)))
then return PRUNE

2. if (NOT(CheckLeft(BS .V1.l− c, BS .V1.r + c, p, BR, W))) or
NOT(CheckRight(BS.V1.l− c, BS .V1.r + c, p, BR, W)))
then return PRUNE

3. return CHECK

Figure 6: Page Level Join for Equality.

EquiJoin applies two sets of criteria. The first test (Step 1)
uses CheckLeft and CheckRight on page BS (of table S),
using the 0-bound of page BR (extended with resolution c) to form
a range query. In other words, the range query with the interval
[BR.V1.l − c, BR.V1.r + c] is checked against BS using left- and
right-x-bounds. If CheckLeft or CheckRight returns FALSE,
by Lemma 3 no uncertain attribute in BS is in [BR.V1.l−c, BR.V1.r+
c] with a probability higher than p. EquiJoin then returns PRUNE
to indicate that these pages cannot be joined.

If Step 1 does not return PRUNE, EquiJoin uses another set of
tests in Step 2, which exchanges the role of BR and BS : the range
query is now constructed by using the 0-bound of BS , and tested
against the uncertainty bounds in BR. Again, EquiJoin returns
PRUNE if either CheckLeft or CheckRight is FALSE. If none
of these tests work, EquiJoin concludes that it cannot prune the
pages (Step 3).

The correctness of EquiJoin hinges on the four test conditions.
Below, we establish the correctness when the first testing procedure
in Step 1, namely CheckLeft, returns FALSE on pages BR and
BS . The other three conditions use the same principles and their
proofs are skipped. We begin with the following lemma.

LEMMA 4. If CheckLeft of Step 1 in EquiJoin returns FALSE,
then for every uncertain value Sj in BS , its probability of satisfy-
ing the range query formed by any uncertainty interval of Ri stored
in BR extended with c, i.e., [Ri.l − c, Ri.u + c], must be less than
p.

PROOF. From Lemma 3, we know that no attributes in BS sat-
isfies the range query formed by [BR.V1.l − c, BR.V1.r + c] with
probability higher than p. Further, any uncertainty interval Ri.U in
BR must be enclosed by [BR.V1.l, BR.V1.r], and therefore Ri.r+
c ≤ BR.V1.r + c. According to Step 1(i) of CheckLeft there
must be some q such that BR.V1.r + c < BS.Vq .l and Wq < p.

Therefore,

Ri.r + c < BS .Vq.l (4)

As shown in Figure 7, none of the uncertainty intervals in BS

crosses the line BS.Vq .l with a fraction of more than Wq. This
implies no values in BS can satisfy [Ri.l − c, Ri.r + c] with prob-
ability higher than p.

Ri.r+c

BS.Vq.l

Sj.l Sj.r Sj.r+cSj.l-c

Ri.l Ri.rRi.l-c

BS.V1.l BS.V1.r

≤Wq

Figure 7: Illustrating the correctness of EquiJoin.

For any Ri and Sj stored in pages BR and BS , the intersection
between [Ri.l − c, Ri.r + c] and [Sj .l − c, Sj .r + c] is given by
[lRi,Sj,c, uRi,Sj,c], where lRi,Sj ,c is max(Ri.l − c, Sj .l − c) and
uRi,Sj,c is min(Ri.r + c, Sj .r + c). The following lemma can be
derived.

LEMMA 5. If CheckLeft of Step 1 in EquiJoin returns FALSE,

Sj .F (uRi,Sj ,c) − Sj .F (lRi,Sj ,c) < p (5)

PROOF. Recall from Lemma 4 that Sj with uncertainty interval
[Sj .l, Sj .r] satisfies range query [Ri.l − c, Ri.r + c] with a prob-
ability less than p. This implies the cumulative probability in the
overlap region of Sj .U and [Ri.l − c, Ri.r + c] is less than p, i.e.,

Sj .F (min(Ri.r + c, Sj .r)) − Sj .F (max(Ri.l − c, Sj .l)) < p
(6)

We now make the following claims.
Claim 1:

Sj .F (max(Ri.l − c, Sj .l)) = Sj .F (lRi,Sj,c) (7)

PROOF. There are two cases:
(1) Ri.l − c ≥ Sj .l. Then Ri.l − c ≥ Sj .l − c, and hence
max(Ri.l − c, Sj .l) is equal to max(Ri.l − c, Sj .l − c), and thus
Equation 7 is correct.
(2) Ri.l−c < Sj .l. Then Sj .F (max(Ri.l − c, Sj .l)) = Sj .F (Sj .l) =
0. Moreover, max(Ri.l − c, Sj .l − c) is either Ri.l−c or Sj .l−c;
the latter is illustrated in Figure 7. Since Ri.l − c and Sj .l −
c are less than Sj .l, by Definition 2, both Sj .F (Ri.l − c) and
Sj .F (Sj .l−c) are equal to 0. Therefore, Equation 7 is correct.

Claim 2:

Sj .F (min(Ri.r + c, Sj .r)) = Sj .F (uRi,Sj ,c) (8)

PROOF. Recall from Equation 4 that Ri.r + c must be to the
left of the left-Wq-bound, as illustrated in Figure 7. Moreover, as
Wq < 1, Sj .r must be to the right of BS.Vq .l; otherwise the en-
tire interval Sj .U is on the left of the left-Wq-bound, implying thatR BS .Vq.l

Sj .l
Sj .f(y)dy is 1, which is larger than Wq and violates Def-

inition 9. Hence, Ri.r+c is less than Sj .r, which in turn cannot be
larger than Sj .r + c. This means min(Ri.r + c, Sj .r) is the same
as min(Ri.r + c, Sj .r + c), and thus Equation 8 is correct.

Based on Equations 7 and 8, the left hand side of Equation 6 is
the same as

Sj .F (min(Ri.r + c, Sj .r + c))− Sj .F (max(Ri.l− c, Sj .l− c))

Thus Lemma 5 holds.

We now prove the correctness of EquiJoin. Suppose Step 1
CheckLeft returns FALSE. From Lemma 1, we know that P (Sj =c

Ri) ≤ Sj .F (uRi,Sj ,c) − Sj .F (lRi,Sj ,c), which is less than p ac-
cording to Lemma 5. Thus CheckLeft prunes pages correctly.

For the remaining criteria, the proofs are skipped due to lack of
space. By calling four small testing routines, EquiJoin can effi-
ciently prune using the page x-bounds.

4.3 Page-Level Join for “Greater than”
We have developed a page-level pruning algorithm for “>” called

GTJoin. As illustrated in Figure 8, GTJoin returns three possible
answers. The first type of answer, called PRUNE, signals to the
caller of GTJoin that no interval pairs in the pages concerned have
a probability of p or more of being joined (Step 1). The second
type of answer, called INCLUDE, does the opposite: it informs the
user that every pair of intervals from BR and BS join with proba-
bility higher than p, and these pairs can be inserted to the answer
without hesitation (Step 2). The final kind of answer, CHECK, is re-
turned when neither the conditions in Step 1 nor those in Step 2 are
satisfied. This implies that all pairs must be checked for possible
inclusion in the result.

Input
BR /* Page (with uncertainty bounds) from table R */
BS /* Page (with uncertainty bounds) from table S */
W /* Global table storing values of x for x-bounds */
p /* probability threshold of > join */

Output
(i)PRUNE:∀Ri ∈ BR, Sj ∈ BS ,it is

certain that P (Ri > Sj) < p;
(ii)INCLUDE:∀Ri ∈ BR, Sj ∈ BS ,it is

certain that P (Ri > Sj) ≥ p;
(iii) CHECK otherwise.

GTJoin(BR, BS, W, p)
1. if NOT(CheckRight(BS.V1.l, BS .V1.r, p,BR, W))

or NOT(CheckLeft(BR.V1.l, BR.V1.r, p, BS, W))
then return PRUNE

2. if NOT(CheckRight(BR.V1.l, BR.V1.r, 1 − p, BS , W))
or NOT(CheckLeft(BS.V1.l, BS .V1.r, 1 − p,BR, W))
then return INCLUDE

3. return CHECK

Figure 8: Page Level Join for Ri > Sj .

Intuitively, Step 1 first forms a range query by using the 0-bounds
of BS and query it against the right x-bounds of page BR, by us-
ing CheckRight. Figure 9(a) illustrates this. If there exists some
q such that BS.V1.l ≥ BR.Vq .r and Wq < p, the page pairs
can be pruned. If this test fails to prune, another test based on
CheckLeft is performed, where the range query is formed by the
0-bounds of BR, querying against the left x-bounds of BS . The
scenario is shown in Figure 9(b).

The role of CheckRight and CheckLeft of Step 1 is to test
whether P (Ri > Sj) < p, and if so, “throw away” BR and BS .
Step 2 performs the opposite: it establishes the conditions in which
every pair of items in BR and BS can be placed in the answer.
Specifically Step 2 verifies the condition P (Sj > Ri) < 1 − p,
which can be easily achieved by modifying the parameters in Step

BS.Vt.lBS.V1.l BS.V1.r

(a)

Ri.l Ri.r

Sj.l Sj.r

≤Wt

(b)

BR.Vq.r

Ri.l Ri.r

Sj.l Sj.r

BR.V1.l BR.V1.r

≤Wq

Figure 9: Pruning pages (for >).

1. Since P (Ri > Sj) = 1 − P (Sj > Ri), if any of the two
conditions in Step 2 are satisfied, we can conclude that P (Ri >
Sj) ≥ p. GTJoin then returns INCLUDE to indicate that all pairs
of (Ri, Sj) can be inserted to the answer without probing.

Similar to EquiJoin, GTJoin requires little time as it only calls
four small checking subroutines. With this little overhead, the sav-
ings can be significant as illustrated in our experiments.

4.4 Uncertainty-enhanced Joins
The page-level pruning techniques can be used to improve the

performance of interval or spatial join algorithms that retrieve data
in units of pages. Whenever two data pages are compared in the
join algorithms, uncertainty tables can be read first, and with our
pruning techniques, probing into actual values in the pages can be
avoided. Of course, GTJoin may not prevent the retrieval of inter-
vals when INCLUDE is returned – however, it still improves per-
formance because we can simply add the Cartesian product of the
intervals from the two pages to the answer without computing the
actual probabilities.

We further illustrate our techniques by studying the example of
the Block-Nested-Loop Join (BNLJ). In this algorithm, the two re-
lations to be joined are organized as lists of unordered pages. Each
page read from the outer relation is matched with each page from
the inner relation iteratively, which can be slow because we have
to check each pair of intervals from both relations. However, by
augmenting each page with an uncertainty table, we can speed up
this matching process by using EquiJoin or GTJoin. We denote
the version of BNLJ where uncertainty tables are augmented as
Uncertainty-based Block-Nested-Loop Join (U-BNLJ for short).
We will compare the performance differences experimentally be-
tween these two join algorithms in Section 5. Other page-based
join algorithms, such as interval hash join and sort-merge-join, can
be enhanced in a similar manner and the details are skipped here.

4.5 Index-level Join
Although uncertainty tables can be used to improve the perfor-

mance of page-based joins, they do not improve I/O performance,
simply because the pages still have to be loaded in order to read the
uncertainty tables. However, we can extend the idea of page-level
pruning to improve I/O performance, by organizing the pages in a
tree structure. Conceptually, each tree node still has an uncertainty
table, but now each uncertainty interval in a tree node becomes a
Minimum Bounding Rectangle (MBR) that encloses all the uncer-
tainty intervals stored in that MBR. Page-level pruning now oper-
ates on MBRs instead of uncertainty intervals. The correctness of
these algorithms can be shown easily, by using the fact that each
MBR tightly encloses the intervals within the subtree, and argu-
ments similar to Lemma 4.

An implementation of uncertainty tables in the index level is the
the Probability Threshold Index (PTI) [2], originally designed to
answer probability threshold range queries. It is essentially an in-
terval R-Tree, where each intermediate node is augmented with un-
certainty tables. Specifically, for each child branch in a node, PTI
stores both the MBR and the uncertainty table V of each child. We
can use PTI to improve join performance in the framework of the
Indexed-Nested-Loop-Join (INLJ), by constructing a PTI for the
inner relation. The 0-bound of each page from the outer relation
is then treated as a range query and tested against the PTI in the
inner relation. All pages that are retrieved from the PTI are then
individually compared with the page from where the range query
is constructed, and our page-level pruning techniques can then be
used again to reduce computation efforts.

We denote the version of INLJ where PTI is used in place of
an interval index as Uncertainty-based Indexed-Loop Join, or U-
INLJ for short. We present the performance results of INLJ and
U-INLJ in the next section.

5. EXPERIMENTAL RESULTS
We have evaluated the performance of our pruning methods for

the equality operator. We will present the simulation model fol-
lowed by the results.

5.1 Simulation Model
Two tables of uncertain data are generated, where the uncertainty

pdf is uniform for both datasets. For the first table, uncertainty
intervals are uniformly distributed in [0, 10000]. The length of each
interval is normally distributed with a mean μ of 5 and deviation
σ of 1. For the other table, intervals are uniformly distributed in
[5000, 15000], and the length is normal with μ = 10 and σ = 2.
Each disk page stores up to 50 tuples. We study the performance of
joins over these two tables by evaluating the number of tuple-pair
candidates output from the join algorithms (Npair) for item-level
pruning, and the number of pairs where probability evaluation has
to be performed (Nprob).

5.2 Results
Page-Level Pruning Figure 10 shows that U-BNLJ performs

substantially better than BNLJ in Npair . This is because U-BNLJ
performs page-level pruning while BNLJ does not. However, U-
BNLJ does not benefit much from large values of p. Since inter-
vals are stored randomly, intervals in each disk page can be widely
spread. Consequently all the x-bounds are close to the 0-bound,
and the page-level join cannot exploit p effectively.

Index-Level Pruning The above problem can be alleviated by
organizing intervals with an index. Figure 11 shows that both INLJ
and U-INLJ have a much better performance in Npair than BNLJ
and U-BNLJ. Further, U-INLJ exploits p much better than INLJ
as uncertainty bounds are used effectively.

Item-Level Pruning Figure 12 shows the number of pairs that
we have to compute probability (Nprob) for the four joins. We see
that the four graphs almost coincide. This means regardless of how
many tuple-pairs are produced, the final number of intervals that
have to be evaluated is almost the same. This implies our item-level
pruning techniques can eliminate a large portion of false positives
regardless of the join algorithm. The computational effort due to
probability evaluation is reduced significantly.

The effect of Resolution for the equality operator is illustrated in
Figure 13. We observe that Nprob increases with c. With a larger
value of c, the uncertainty interval of each tuple is expanded sig-
nificantly and thus the chance for pruning is reduced. However,
increase in c implies more relaxation of “equality”, potentially re-

turns more answers. This is illustrated in Figure 14. Interestingly,
the growth of number of answers saturates as c > 3. This indi-
cates that c does not need to be large in order to obtain all possible
matches.

Selectivity We also test the effect of join selectivity on U-INLJ.
Figure 15 shows that U-INLJ benefits from high selectivity. When
a join is highly selective, U-INLJ requires less traversal over the
tree, and thus fewer pages need to be retrieved.

Greater Than We present an interesting result for > in Fig-
ure 16. We observe that U-INLJ does not have the same behavior
as in Figure 11. Here Npair does not show a sharp drop as p in-
creases. Recall that in the page-level join for >, INCLUDEmay be
returned. When p is very low, there is a high chance for objects to
be directly included in the answer. Hence Npair is low when p is
low.

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m
b
e
r

o
f

C
o
m
p
a
r
i
s
o
n
s
(
K
)

Probability Threshold

INLJ
U-INLJ

Figure 16: INLJ and U-INLJ (for >)

6. RELATED WORK
The model for managing uncertain data discussed in this paper is

based on [1]. Similar models are proposed in moving-object envi-
ronments [15, 6] and in sensor networks [5]. Recently, the Trio Sys-
tem [14] has been proposed to handle such uncertainty. Discussion
of uncertainty in other data types can be found in [16]. Another rep-
resentation of data uncertainty is a “probabilistic database”, where
each tuple is associated with a probability value to indicate the con-
fidence of its presence [4]. Probabilistic databases have also been
recently extended to semi-structured data [12] and XML [9].

Probabilistic queries are classified as value-based (return a single-
value) and entity-based (return a set of objects) in [1]. Probabilistic
join queries belong to the entity-based query class. Evaluation of
probabilistic range queries is discussed in [6, 15, 1, 4]. Nearest-
neighbor queries are discussed in [1]. In [1, 4],aggregate value-
queries evaluation algorithms are presented. To our best knowl-
edge, probabilistic join queries have not been addressed before.
Also these works did not focus on the efficiency issues of proba-
bilistic queries. Although [2] did examine the issues of query effi-
ciency, their discussions are limited to range queries.

There is a rich vein of work on interval joins, which are usually
used to handle temporal and one-dimensional spatial data. Dif-
ferent efficient algorithms have been proposed, such as nested-loop
join [8], partition-based join [13], and index-based join [17]. Re-
cently the idea of implementing interval join on top of a relational
database is proposed in [7]. All these algorithms do not utilize
probability distributions within the bounds during the pruning pro-

 200000

 250000

 300000

 350000

 400000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m
b
e
r

o
f

C
a
n
d
i
d
a
t
e
s
(
K
)

Probability Threshold

BNLJ
U-BNLJ

Figure 10: BNLJ and U-BNLJ

 800

 900

 1000

 1100

 1200

 1300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m
b
e
r

o
f

C
a
n
d
i
d
a
t
e
s
(
K
)

Probability Threshold

INLJ
U-INLJ

Figure 11: INLJ and U-INLJ

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m
b
e
r

o
f

C
o
m
p
u
t
a
t
i
o
n
s
(
K
)

Probability Threshold

BNLJ
U-BNLJ
INLJ

U-INLJ

Figure 12: Nprob vs p

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m
b
e
r

o
f

C
o
m
p
u
t
a
t
i
o
n
s
(
K
)

Resolution

BNLJ
U-BNLJ
INLJ

U-INLJ

Figure 13: Nprob vs c

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m
b
e
r

o
f

R
e
s
u
l
t
s
(
K
)

Resolution

Number of Results

Figure 14: No. of results vs c

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4000 6000 8000 10000 12000

N
u
m
b
e
r

o
f

I
/
O
s
(
K
)

Selectivity

U-INLJ

Figure 15: Selectivity on U-INLJ

Level Savings Applicability Algorithms
Item Computation =c, �=c, >, < BNLJ, INLJ
Page Computation =c, >, < U-BNLJ
Index I/O & computation =c, >, < U-INLJ

Table 1: Pruning Methods for Uncertainty Joins.

cess, and thus potentially retrieve many false candidates. We demon-
strated how our ideas can be applied easily to enhance these exist-
ing interval join techniques.

7. CONCLUSIONS
Uncertainty management is an emerging topic and has attracted

research interest in recent years. Indeed, as pointed out in the Low-
ell Database meeting [10], DBMSs should support imprecision that
arises in data acquired by scientific instruments. We identified an
important issue in managing data imprecision: the extension of
comparison operators for uncertainty and the joining of uncertain-
valued attributes. Joining uncertainty can be costly, and we dis-
cussed numerous techniques to reduce the cost. We illustrate how
pruning can be achieved at different granularity: item level, page
level, and index level. Their properties are summarized in Table 1.
With only a small overhead, these techniques can improve join per-
formance significantly. We intend to extend this work to address
join queries over multi-dimensional uncertainty.

8. REFERENCES
[1] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

probabilistic queries over imprecise data. In Proc. SIGMOD,
2003.

[2] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter.
Efficient indexing methods for probabilistic threshold
queries over uncertain data. In Proc. VLDB, 2004.

[3] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter.
Efficient join processing over uncertain data. Technical

Report CSD TR# 05-004, Dept. of CS, Purdue University,
2005.

[4] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In Proc. VLDB, 2004.

[5] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In Proc. VLDB, 2004.

[6] D.Pfoser and C. Jensen. Capturing the uncertainty of
moving-objects representations. In Proc. SSDBM, 1999.

[7] J. Enderle, M. Hampel, and T. Seidl. Joining interval data in
relational databases. In Proc. SIGMOD, 2004.

[8] H. Gunadhi and A. Segev. Query processing algorithms for
temporal intersection joins. In Proc. ICDE, 1991.

[9] E. Hung, L. Getoor, and V. S. Subrahmanian. PXML: A
probabilistic semistructured data model and algebra. In
ICDE, 2003.

[10] The Lowell Database Research Self-Assessment Meeting.
Lowell massachusetts. May 2003.

[11] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[12] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic Data

in XML. In VLDB, 2002.
[13] M. Soo, R. Snodgrass, and C. Jensen. Efficient evaluation of

the valid-time natural join. In Proc. ICDE, 1994.
[14] J. Widom. Trio: A system for integrated management of

data, accuracy, and lineage. In Proc. CIDR, 2005.
[15] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha.

Updating and querying databases that track mobile units.
Distributed and Parallel Databases, 7(3), 1999.

[16] A. Yazici, A. Soysal, B. Buckles, and F. Petry. Uncertainty in
a nested relational database model. Elsevier Data and
Knowledge Engineering, 30, 1999.

[17] D. Zhang, V. Tsotras, and B. Seeger. Efficient temporal join
processing using indicies. In Proc. ICDE, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

