Indexing Uncertain Categorical Data *

Sarvjeet Singh Chris Mayfield

Sunil Prabhakar

Rahul Shah Susanne Hambrusch

Department of Computer Science, Purdue University
West Lafayette, IN 47907, USA
{sarvjeet, cmayfiel, sunil, rahul, seh}@cs.purdue.edu

Abstract

Uncertainty in categorical data is commonplace in many
applications, including data cleaning, database integration,
and biological annotation. In such domains, the correct
value of an attribute is often unknown, but may be se-
lected from a reasonable number of alternatives. Current
database management systems do not provide a convenient
means for representing or manipulating this type of uncer-
tainty. In this paper we extend traditional systems to ex-
plicitly handle uncertainty in data values. We propose two
index structures for efficiently searching uncertain categor-
ical data, one based on the R-tree and another based on an
inverted index structure. Using these structures, we provide
a detailed description of the probabilistic equality queries
they support. Experimental results using real and synthetic
datasets demonstrate how these index structures can effec-
tively improve the performance of queries through the use
of internal probabilistic information.

1. Introduction

Uncertainty is prevalent in many application domains.
Consider for example a data cleaning application that auto-
matically detects and corrects errors [18]. In such an appli-
cation, there often exists more than one reasonable choice
for the correct value of an attribute. Relational database sys-
tems, however, do not allow the modeling or storage of this
uncertainty directly. Instead, the application is forced either
to use a complex model for the data (allowing multiple val-
ues, thereby significantly complicating the application and
queries), or to pick one of the alternative values (e.g. the
most likely choice) to store in the database [28]. While the
second option is commonly employed, it results in signifi-
cant loss of information and lower quality of data. An alter-
native that allows the application to store the uncertainty in

*This work was supported by NSF grants IIS 0242421, IIS 0534702,
IIS 0415097, AFOSR award FA9550-06-1-0099 and ARO grant
DAAD19-03-1-0321

the cleansed value directly is highly desirable.

Data cleansing applications often result in uncertainty in
the “cleaned” value of an attribute. Many cleansing tools
provide alternative corrections with associated likelihood.
For example, data collected from sensors is notoriously im-
precise. As part of an ongoing project at Purdue University,
the movement of nurses is being tracked in order to study
their behavior and effectiveness of current practices. Nurses
carry RFID tags as they move about a hospital. Numerous
readers located around the building report the presence of
tags in their vicinity. The collected data is stored centrally
in the form “Nurse 10 in Room 5 at 10:05 am.” Each nurse
carries multiple tags. The variability in the detection range
of readers and the presence of interfering objects makes it
impossible to position nurses accurately. Thus the appli-
cation may not be able to identify with certainty a single
location for the nurse at all times. A similar application is
discussed in [18].

In the context of automatic data integration, deep web
data in the form of dynamic HTML pages can be used to
generate relational data [23]. This is a challenging problem
and often the mapping from data in the web page to an at-
tribute in the corresponding tuple is unclear. For example, it
may be known that the page contains prices for data items,
and the web page contains a set of numeric values. It is
challenging for a program to determine which value maps
to the price for a given item with accuracy. Instead, exist-
ing algorithms generate multiple candidates for the value
of an attribute, each with a likelihood or probability of be-
ing the correct value. Again, due to the lack of support for
storing such uncertainty, current applications have to build
their own complex models for managing the uncertainty, or
just choose the most likely value. Similar issues arise in
the domain of integrating unstructured text information with
structured databases, such as automatic annotation of cus-
tomer relationship management (CRM) databases [7], and
email search databases.

In summary, there are many applications for which the
data exhibits uncertainty in attribute values. Support for
such data has been proposed through the development of

uncertain relational data models [2, 10, 20, 25, 28]. The
ORION project [25] is a recent effort aimed at developing
an advanced database management system with direct sup-
port for uncertain data. The current version of the system,
which is developed as an extension of PostgreSQL, supports
the storage and querying of uncertain attributes. As with
traditional data, there is a need for efficient execution of
queries over uncertain data. Existing database index struc-
tures are not directly applicable for uncertain data. Much
of the recent interest in uncertain data management has fo-
cused on the development of models for representing un-
certainty and query processing semantics [10, 11]. Index-
ing support for uncertain data has only been developed for
real-valued attributes [9]. These index structures are inap-
plicable for categorical uncertain data.

This paper addresses the problem of indexing uncertain
categorical data represented as a set of values with associ-
ated probabilities. We propose two different index struc-
tures. We show that these structures support a broad range
of probabilistic queries over uncertain data, including the
typical equality, probability threshold, and top-K queries.
Our index structures can also be used for queries that are
only meaningful for uncertain data such as distribution sim-
ilarity queries. However, due to lack of space, only equality
based queries are discussed in the paper. The new indexes
are shown to provide efficient execution of these queries
with good scalability through experimental validation us-
ing real and synthetic data. The contributions of this paper
are: 1) the development of two index structures for uncer-
tain categorical data; and ii) the experimental evaluation of
these structures with real and synthetic data.

2. Data Model and Problem Definitions

Under the categorical uncertainty model [2], a relation
can have attributes that are allowed to take on uncertain
values. For the sake of simplicity, we limit the discussion
to relations with a single uncertain attribute, although the
model makes no such restriction. The focus of this paper is
on uncertain attributes that are drawn from categorical do-
mains. We shall call such an attribute an uncertain discrete
attribute (UDA)'. Let R.a be a particular attribute in rela-
tion R which is uncertain. R.a takes values from the cate-
gorical domain D with cardinality |D| = N. For a regular
(certain) relation, the value of an attribute a for each tuple,
t.a, would be a single value in D, i.e., t.a € D. In the case
of an uncertain relation, ¢.a is a probability distribution over
D instead of a single value. Let D = {dy, da, ..., dn}, then
t.a is given by the probability distribution Pr(t.a = d;)
for all values of 4 € {1,..., N}. Thus, t.a can be repre-

'In this paper, we use the term discrete to mean discrete categorical
data. The alternative to this is discrete numeric data, on which some more
operations can be defined, is not the focus of the paper.

sented by a probability vector t.a = (p1, pa, ..., pn) such
that Zfil p; = 1. In many cases, the probability vector is
sparse and most p;s are zeros. In such cases, we may repre-
sent t.a by a set of pairs {(d, p)|(Pr(t.a =d) =p) A (p #
0)}. Hereafter we denote a UDA by w instead of ¢.a unless
noted otherwise. Also, we denote Pr(u = d;) by w.p;.
Table 1(a) is for a CRM application with UDA attribute
Problem. The Problem field is derived from the Text
field in the given tuple using a text classifier. A typical
query on this data would be to report all the tuples which
are highly likely to have a brake problem (i.e., Problem
= Brake). Table 1(b) shows a table from a personnel
planning database where Department is uncertain field.
Again, one might be interested in finding employees which
are highly likely to be placed in the Shoes or Clothes
department. Formally we define UDA as follows.

Definition 1 Given a discrete categorical domain D =
{d1,..,dn}, an uncertain discrete attribute (UDA) u is a
probability distribution over D. It can be represented by
the probability vector u.P = (p1, ..., pn) such that Pr(u =
di) = u.p;.

Semantically, we assume that the uncertainty is due to
lack of knowledge of the exact value. However, the actual
value of attribute is just one of the given possibilities. With
this interpretation, we define the semantics of operators on
UDAs. Given an element d; € D, the equality of u = d;
is a probabilistic event. The probability of this equality is
given by Pr(u = d;) = p;. The definition can be extended
to equality between two UDAs v and v under the indepen-
dence assumption as follows:

Definition 2 Given two UDAs w and v, the ﬁrobability that
they are equal is given by Pr(u = v) =Y ;" | u.p; X V.p;.

This definition of equality is a natural extension of the
usual equality operator for certain data. As with the reg-
ular equality operator, this uncertain version can be used
to define operations such as joins over uncertain attributes.
Example uses of this operator are to compute the proba-
bility of pairs of cars having the same problem, or of two
employees working for the same department. Analogous to
the notion of equality of value is that of distributional simi-
larity. Distribution similarity is the inverse of distributional
divergence, which can be seen as a distance between two
probability distributions. We consider the following dis-
tance functions between two distributions:

Li: Ly(u,v) = vazl |w.p; — v.p;|. This is the Manhattan
distance between two distributions.

2We wish to note that the sum can be < 1 in the case of missing values,
and our model can also handle this case without any changes. In this paper,
we assume that the sum is 1.

|| Make | Location | Date | Text | Problem || || Employee | Department ||
Explorer WA 2/3/06 ‘e {(Brake, 0.5), (Tires, 0.5)} Jim {(Shoes, 0.5),(Sales, 0.5)}
Camry CA 3/5/05 {(Trans, 0.2, (Suspension, 0.8)} Tom {(Sales, 0.4), (Clothes, 0.6)}
Civic TX 10/2/06 {(Exhaust, 0.4), (Brake, 0.6)} Lin {(Hardware, 0.6), (Sales, 0.4) }
Caravan IN 7/2/06 {(Trans, 1.0)} Nancy {(HR, 1.0)}
(a) (b)

Table 1. Examples of Uncertain Relations

Lot Lo(u,v) = \/Zf\il(upl —v.p;)2. This is the Eu-
clidean distance between two distributions.

KL(u,v): KL(u,v) = Zf\il w.p; log(u.p; /v.p;). This is
Kullback-Leibler (KL) divergence based on cross en-
tropy measure. This measure comes from information
theory. Unlike the above two, this is not a metric.
Hence it is not directly usable for pruning search paths
but can be used for clustering in an index [26].

Divergence functions such as KL which tend to compare
the probability values by their ratios are also important in
equality based indexing. Since each probability value in the
computation of equality probability is multiplied by a scal-
ing factor, it is meaningful to consider ratios. If UDA
has a high equality probability with UDA ¢, and K L(u,v)
is small, then v is also likely to have a high equality prob-
ability with ¢q. This principle is used to cluster UDAs for
efficiently answering queries.

There is one major distinction between the notions of
distributional similarity and equality between two UDAs.
Two distributions may be exactly similar but can have less
probability of being equal than two unequal distributions.
For example, consider the case where two UDAs u and v
have the same vector: (0.2,0.2,0.2,0.2,0.2). In this case,
Pr(u = v) = 0.2. However, if u = (0.6,0.4,0,0,0) and
v = (0.4,0.6,0,0,0), the probability of equality, Pr(u =
v) = 0.48, is higher even though they are very different in
terms of distributional distance.

Having defined the model and primitives, we next de-
fine the basic query and join operators. We define equal-
ity queries, queries with probabilistic thresholds and queries
which give top-k most probable answers. For each of these
queries we can define a corresponding join operator.

Definition 3 Probabilistic equality query (PEQ): Given a
UDA q, and a relation R with a UDA a, the query returns
all tuples t from R, along with probability values, such that
the probability value Pr(q = t.a) > 0.

Often with PEQ there are many tuples qualifying with
very low probabilities. In practice, only those tuples which
qualify with sufficiently high probability are likely to be of
interest. Hence the following queries are more meaning-
ful: (1) equality queries which use probabilistic thresholds

[2], and (2) equality queries which select k tuples with the
highest probability values.

Definition 4 Probabilistic equality threshold query
(PETQ): Given a UDA q, a relation R with UDA a, and a
threshold T, T > 0. The answer to the query is all tuples t
from R such that Pr(q = t.a) > 1.

An example PETQ for the data in Table 1(b) determines
which pairs of employees have a given minimum probabil-
ity of potentially working for the same department. In a
medical database with an uncertain attribute for possible
diagnoses, a PETQ query can be used to identify patients
that have similar problems. Analogous to PETQ, we define
the top-k query PEQ-top-k, which returns the % tuples with
the highest equality probability to the query UDA. Such a
query can determine the k patients that are most similar to a
given patient in terms of their likely diseases. In our index-
ing framework, the top-k queries are executed essentially
using threshold queries. This is achieved by dynamically
adjusting the threshold 7 to the kth highest probability in
the current result set, as the index processes candidates.

Similar to probabilistic equality-based queries, we can
define all of the above queries with distributional similarity.
Given a divergence threshold, 7,4, the tuples which qualify
for query with UDA ¢ are those whose distributional dis-
tance with ¢ is at most 74. These are called distributional
similarity threshold queries (DSTQ).

Definition 5 DSTQ: Given a UDA q, a relation R with
UDA a, a threshold T4, and a divergence function F, DSTQ
returns all tuples t from R such that F(q,t.a) < 4.

There is again a similar notion for DSQ-top-k. The dis-
tributional distance can be any of the divergence functions
(L1, Lo, KL) defined above. An example application of a
DSTQ is to find similar documents (e.g. web pages) in col-
lections of documents. Although the focus of this paper
is on probabilistic equality queries, it is straightforward to
adapt our framework of indexing to distributional similarity
queries. In addition, distributional distance is a key concept
used for clustering in one of our indexes.

We can extend the select query operators above to join
operators. Given two UDAs u and v, and a probability
threshold 7, w joins with v if and only if Pr(u,v) > 7.

Thus, given two relations R and S both having UDA a, we
can define threshold equality join:

Definition 6 Given two uncertain relations R, S both with
UDAs a, b, respectively, relation R g ,—s, » S consists
of all pairs of tuples r,s from R, S respectively such that
Pr(r.a = s.b) > 7. This is called probabilistic equality
threshold join (PETJ).

This definition may also be extended to define PEJ-top-
k, DSTJ, and DSJ-top-k joins. We wish to note here that
joining does introduce new correlations between the resul-
tant tuples and they are no longer independent of each other.
Our model only includes the selection based on thresholds.
Tracking dependencies requires keeping track of lineage
and is not considered in our paper.

Although this paper addresses the general case of cat-
egorical uncertainty, it should be noted that for the spe-
cial case of totally ordered categorical domains, e.g., D =
{1, .., N}, additional inequality probabilistic relations and
operators can be defined between two UDAs. For example,
we can define Pr(u > v), and Pr(|u—v| < ¢). The notion
of probabilistic equality can be slightly relaxed to allow a
window within which the values are considered equal. The
techniques require to index these queries are discretized ver-
sions of those in [9].

3. Index structures

In this section, we describe our index structures to ef-
ficiently evaluate queries and joins defined in the previous
section. We develop two types of index structures: (1) In-
verted index based structures, and (2) R-tree based struc-
tures. Although both structures have been explored for in-
dexing set attributes [21, 22], the extension to the case of
uncertain data with probabilities attached to members is
not straight-forward. Experimental results show there is no
clear winner between these two index structures. Section 4
discusses the advantages and disadvantages of each struc-
ture with respect to performance, depending on the nature
of data and queries.

3.1. Probabilistic Inverted Index

Inverted indexes are popular structures in information re-
trieval [1]. The basic technique is to maintain a list of lists,
where each element in the outer list corresponds to a do-
main element (i.e. the words). Each inner list stores the
ids of documents in which the given word occurs, and for
each document, the frequencies at which the word occurs.
Traditional applications assume these inner lists are sorted
by document id. We introduce a probabilistic version of
this structure, in which we store for each value in a cate-
gorical domain D a list of tuple-ids potentially belonging to

(ti9,0.78) [(ts1,0.75) [(t50,074) [...]
(t:,0.05) [(tia, 0.05)[(t57,0.04)] (t2s,0.0D) [... |

(ts7,091) [(t2,0.88) [... |

Figure 1. Probabilistic Inverted Index

D. Along with each tuple-id, we store the probability value
that the tuple may belong to the given category. In contrast
to the traditional structure, these inner lists are are sorted by
descending probabilities. Depending on the type of data, the
inner lists can be long. In practice, these lists (both inner or
outer) are organized as dynamic structures such as B-trees,
allowing efficient searches, insertions, and deletions.

Figure 1 shows an example of a probabilistic inverted
index. At the base of the structure is a list of categories
storing pointers to lists, corresponding to each item in D
that occurs in the dataset. This is an inverted array stor-
ing, for each value in D, a pointer to a list of pairs. In
the list d;.list corresponding to d; € D, the pairs (tid, p)
store tuple-ids along with probabilities, indicating that tuple
tid contains item d; with probability p. That is, d;.list =
{(tid, p)|Pr(tid = d;) = p > 0}. Again, we sort these
lists in order of descending probabilities.

We first describe the insert and delete operations which
are relatively more straightforward than search. To in-
sert/delete a tuple (UDA) tid in the index, we add/remove
the tuple’s information in tuple-list. To insert it in the in-
verted list, we dissect the tuple into the list of pairs. For each
pair (d, p), we access the list of d and insert pair (tid, p) in
the B-tree of this list. To delete, we search for tid in the list
of d and delete it.

Next we describe search algorithms to answer the
PETQ query given a UDA ¢ and threshold 7. Let ¢ =
<(di1 7pi1)7 (di27pi2)7 S (dbz 7p’iz)> such that p;, > p;, >

. > p;,. We first describe the brute force inverted in-
dex search which does not use probabilistic information to
prune the search. Next we shall describe three heuristics by
which the search can be concluded early. These methods
search the tuples in decreasing probability order, stopping
when no more tuples are likely to satisfy the threshold .
These optimizations are especially useful when the data or
query is likely to contain many insignificantly low probabil-
ity values. The three methods differ mainly in their stopping
criteria and searching directions. Depending on the nature
of queries and data, one may be preferable over others.

Inv-index-search. This follows the brute-force inverted
index based lookup. For all pairs (d;;,p;,) in g, we retrieve
all the tuples in the list corresponding to each d. Now, from
these candidate tuples we match with ¢ to find out which of
these qualify more than the threshold. This is a very simple

lps=022

p=04 [di | I

: p's=0.92
ps=0.1 | de

1ps=045

pe=02 | d I |

Figure 2. Highest-prob-first Search for ¢ =
<(d3704)7(d8702)7(d6701)>

method, and in many cases when these lists are not too big
and the query involves fewer d;;, this could be as good as
any other method. However, the drawback of this method is
that it reads the entire list for every query.

Highest-prob-first. Here, we simultaneously search
the lists for each dij, maintaining in each dij.list a cur-
rent pointer of the next item to process (see Figure 2). Let
p;], be the probability value of the pair pointed by the cur-
rent pointer in this list. At each step, we consider the most
promising tuple-id. That is, among all the tuples pointed by
current pointers, move forward in that list of d; where the
next pair (tid, p;,) maximizes the value p; p;, . The process
stops when there are no more promising tuples. This hap-
pens when the sum of all current pointer probabilities scaled
by their probability in query g falls below the threshold, i.e.
when Zé‘:l p;,pi; < 7. This works very well for top-k
queries when k is small.

Row Pruning. In this approach, we employ the naive
inverted index search but only consider lists of those items
in D whose probability in query g is higher than threshold
7. It is easy to check that a tuple, all of whose items have
probability less than 7 in g, can never meet the threshold
criteria. For processing top-k using this approach, we can
start examining candidate tuples as we get them and update
the threshold dynamically.

Column Pruning. This approach is orthogonal to the
row pruning. We retrieve all the lists which occur in the
query. Each of these lists is pruned by probability 7. Thus,
we ignore the part of the lists which have probability less
than the threshold 7. This approach is more conducive to
top-k queries.

Note that the above methods require a random access for
each candidate tuple. If the candidate set is significantly
larger than the actual query answer, then this may result in
too many I/Os. We also use no-random-access versions of
these algorithms. Nevertheless, we first argue the correct-
ness of our stopping criteria. This applies to all three of the
above cases.

Lemma 1 Let the query ¢ = {(di;,p;;)|l < j < [}
and threshold T. Let p;], be probability values such that

Zézl Di; p,’ij < 1. Then, any tuple tid which does not oc-
cur in any of the d;, .list with probability at least p;j, cannot
satisfy the threshold query (q, T).

Proof: For any such tuple tid, tid.p;; < pgj. Hence,

le:l pi;tid.p;; < 7. Since q only has positive probability
values for indices i;’s, Pr(q = tid) < 7.]

In many cases, the random access to check whether the
tuple qualifies performs poorly as against simply joining the
relevant parts of inverted lists. Here, we use rank-join algo-
rithms with early-out stopping [12, 17]. For each tuple so
far encountered in our search, we maintain its lack parame-
ter — the amount of probability value required for the tuple,
and which lists it could come from. As soon as the proba-
bility values of required lists drop below a certain boundary
such that a tuple can never qualify, we discard the tuple. If
at any point the tuple’s current probability value exceeds the
threshold, we include it in the result set. The other tuples re-
main in the candidate set. A list can be discarded when no
tuples in the candidate set reference it. Finally, once the
size of this candidate set falls below some number (prede-
termined or determined by ratio to already selected result)
we perform random accesses for these tuples.

3.2. Probabilistic Distribution R-tree (PDR-tree)

In this subsection, we describe an alternative indexing
method based on the R-tree [15]. In this index, each UDA
u is stored in a page with other similar UDAs which are
organized as a tree. The tree-based approach is orthogonal
to the inverted index approach where each UDA is shredded
and indexed by its components. Here, the entire UDA is
stored together in one of the leaf pages of the tree.

Conceptually, we can consider each UDA u as a point
in high-dimensional space R". These points are clustered
to form an index. A major distinction with the regular R-
tree is that the queries for uncertain data have very different
semantics. They are equivalent to hyperplane queries on the
N-dimensional cube. Thus a straight-forward extension of
the R-tree or related structures is inefficient due to the nature
of queries and the curse of dimensionality (as the number of
dimensions — the domain size — can be very large).

We now describe our structure and operations by anal-
ogy to the R-tree. We design new definitions and methods
for Minimum Bounding Rectangles (MBR), the area of an
MBR, the MBR boundary, splitting criteria and insertion
criteria. The concept of distributional clustering is central
to this index. At the leaf level, each page contains several
UDAs (as many as fit in one block) using the aforemen-
tioned pairs representation. Each list of pairs also stores
the number of pairs in the list. The page stores the number
of UDAs contained in it. Figure 3 shows an example of a
PDR-tree index.

Free Space: ... Count: 2

Bound. Vec: [(0,0.4,0.7) [(0,0.2,0.9)

Children: e [N
Free Space: ... Count: 2 Free Space: ... Count: 2
Bound. Vec: Bound. Vec: |(0.0.1.0.9)[(0.0.2,0.8)
Tuple_ids: 765 418 Tuple_ids: 009 201

Figure 3. Probabilistic Distribution R-tree

Each page can be described by its MBR boundaries. The
MBR boundary for a page is a vector v = (v, va, ..., UN)
in R such that v; is the maximum probability of item d; in
any of the UDA indexed in the subtree of the current page.
We maintain the essential pruning property of R-trees; if
the MBR boundary does not qualify for the query, then we
can be sure that none of the UDAs in the subtree of that
page will qualify for the query. In this case, for good per-
formance it is essential that we only insert a UDA in a given
MBR if it is sufficiently tight with respect to its boundaries.
This will be further explained when we discuss insertion.
There are several measures for the “area” of an MBR, the
simplest one being the 1.; measure of the boundaries, which
is Zf\il v;. Our methods are designed to minimize the area
of any MBR. Next, we describe how insert, split and PETQ
are performed.

Insert(u). To insert a UDA into a page, we first update
its MBR information according to w. Next, from the chil-
dren of the current page we pick the best page to accommo-
date this new UDA. The following criteria (or combination
of these) are used to pick the best page: (1) Minimum area
increase: we pick a page whose area increase is minimized
after insertion of this new UDA; (2) Most similar MBR: we
use distributional similarity measure of « with MBR bound-
ary. This makes sure that even if a probability distribution
fits in an MBR without causing an area increase, we may not
end up having too many UDAs which are much smaller in
probability values. Minimizing this will ensure that we do
not hit too many non qualifying UDAs when a query accepts
(doesn’t prune) an MBR. Even though an MBR boundary is
not a probability distribution in the strict sense, we can still
apply most divergence measures described in Section 2.

Split(). There are two alternative strategies to split an
overfull page: fop-down and bottom-up. In the top-down
strategy, we pick two children MBRs whose boundaries are
distributionally farthest from each other according to the di-
vergence measures. With these two serving as the seeds
for two clusters, all other UDAs are inserted into the closer
cluster. An additional consideration is to create a balanced
split, so that two new nodes have a comparable number of

objects. No cluster is allowed to contain more that 3/4 of
the total elements. In the bottom-up strategy, we begin with
each element forming an independent cluster. In each step
the closest pair of clusters (in terms of their distributional
distance) are merged. This process stops when only two
clusters remain. As with the top-down approach, no cluster
is allowed to contain more than 3/4 of the total elements.

PETQ(q, 7). Given the structure, the query algorithm
is straightforward. We do a depth-first search in the tree,
pruning by MBRs. Let ({-, -)) denote the dot-product of two
vectors. For a node c, let c.v denote its MBR boundary vec-
tor. If an MBR qualifies for the query, i.e., if ({c.v,q)) > T,
our search enters the MBR, else that branch is pruned. At
the leaf level, we evaluate each UDA in the page against
the query and output the qualifying ones. For top-k queries,
we need to upgrade the threshold probability dynamically
during the search. An efficiency improvement over the raw
depth-first search is to greedily select that child node c first
for which ({c.v, ¢)) is the maximum. This way we can up-
grade our threshold quickly by finding better candidates at
the beginning of the search which in turn results in better
pruning. The following lemma proves the correctness of
the pruning criteria.

Lemma 2 Consider a node c in the tree. If ((c.v,q)) < T
then no UDA stored under the subtree of c qualifies for the
threshold query (q,T).

Proof: Consider any UDA u stored in the subtree of c.
Since an MBR boundary is formed by taking the point-
wise maximum of its children MBR boundaries, we can
show by induction that w.p; > c.v.p; and ¢; > 0 for any
i, ({(u,q)) < {{c.v,q)) < 7. Thus, u cannot qualify. O

Compression techniques. An issue that was over-
looked earlier is the description of MBR boundaries. Note
that an MBR boundary may be described in terms of | D)|
floating-point values. This may be space inefficient if the
data domain is large. Consider the case when |D| = 1000
and page size is 8K. The description of an MBR bound-
ary may not just fit in a page. This results in a small con-
stant fan-out for the index structure. The MBR description
does not need to be precise and can be stored in approx-
imate form. Thus, we can apply some lossy compression
techniques. With this, the length of the representation of
an MBR becomes variable. These variable length objects
are packed appropriately. The compression technique needs
to make sure that pruning correctness is not compromised.
Hence the lossy representation of an MBR boundary vector
must be an over-estimation of the actual values. There are
two orthogonal approaches to this compression:

Set-Signature based approach: In this case, we define a
function f : D — C where |C| < |D|. Thus C is

the compressed domain. In a given compressed dis-
tribution Pr(c;) = max{Pr(d;)|f(d;) = ¢;}. This
approach is akin to that taken by signature trees for
set-values attributes [21]. Good correlation detection
and clustering methods ensure meaningful f and |C/.

Discretized-overestimation: This reduces the number of
bits required to represent each p; in a UDA. Say we
allow 2 bits (instead of 4 bytes) to represent each p;.
Then, we essentially approximate p; by multiple of
0.25 which is greater than p;. For example, a value of
0.62 will be mapped to 0.75 and can be represented in
2 bits by representing the multiplier 3. When consider-
ing more slabs, we may be able to code each multiplier
using an optimal number of bits as per its frequency
and achieve entropy coding. This also substantially re-
duces the size of the MBR boundary description.

4. Experimental Evaluation

In this section we present the experimental evaluation
of the proposed index structures using real and synthetic
datasets. The real dataset is generated by text cluster-
ing/categorization of customer service constraints for a ma-
jor cell phone service provider in the context of CRM
databases. The base data consists of 100,000 text doc-
uments consisting of complaints, responses, and ensuing
communications between customers and service represen-
tatives. The dataset CRMI1 consists of probability values
generated by automatic categorization of the text into 50
categories. Dataset CRM2 is generated by unsupervised
fuzzy clustering of the text [19, 24]. Each tuple has a fuzzy
membership among 50 clusters.

The synthetic datasets are generated to simulate varying
degrees of correlation and sparsity. The Uniform dataset has
5 items and the probability of each item is chosen randomly
for all tuples. The Pairwise dataset also has 5 elements
but the individual tuples have only 2 non-zero items with
roughly equal probabilities. In addition, the total number
of item combinations is restricted to 5. Both these datasets
have 10k tuples. These two datasets represent the two ex-
treme possible scenarios that our algorithms can face.

The dataset Gen3 used for studying scalability with do-
main size is also generated synthetically. Initially, a number
of item groups are picked at random from the domain. The
size of the item groups, which determines the fill factor (ex-
pected number of non-zero items in a tuple), is distributed
geometrically. The expected group size was varied from 3
(in domain size 10) to 10 (in domain size 500). The item
probabilities inside a group are chosen randomly.

All experiments are conducted with page size of 8 KB.
We measure the number of 1/O operations performed for
processing queries. We test both equality threshold (PETQ)

and PETQ-top-k queries. Multiple thresholds and values
for k are considered in order to produce queries with vary-
ing selectivities. All graphs shown below report the number
of I/O operations for executing queries. In order to simulate
the effect of buffering, all experiments are conducted with
a buffer manager that allocates 100 blocks to each query. A
clock replacement algorithm is used to manage the buffer
pool. Most graphs show how performance (measured in
disk I/Os on the y-axis) is affected by the selectivity of the
queries (shown as a percentage on the x-axis).

4.1. Results

Divergence Measures. The first experiment studies
the relative performance of the three distribution similar-
ity measures, L1, Lo, and K L. The results for the CRM1
dataset are shown in Figure 4. The z-axis shows the query
selectivity and the y-axis shows the number of disk I/O per
query. For low selectivities, the K L measure clearly out-
performs L; which in turn outperforms Lo. For high selec-
tivities, all three perform similarly for top-K queries while
the trend for threshold queries remains the same. The su-
perior performance of K L was observed consistently in all
our experiments. Consequently, we do not present the per-
formance of L; and L in the remainder of this section. We
can also observe that for a given selectivity, the performance
of top-k queries is poorer than that of threshold queries by
roughly a constant factor. This is because a top-k query
needs to explore more tuples in order to guarantee that the
selected top-k tuples do indeed give the largest probabili-
ties. This relative behavior of top-k queries versus threshold
queries was observed in all our experiments.

Synthetic Data. In this experiment we compare the per-
formance of the two index structures for synthetic datasets:
Uniform and Pairwise. The results are shown in Figure 5.
The z-axis shows the query selectivity (as a percentage),
and the y-axis shows the number of disk I/O per query.
For the Uniform dataset, the performance of the inverted
index is clearly inferior to that of the PDR-tree. Because
each data item included nonzero probabilities in many cate-
gories, evaluating the query results in accessing large num-
bers of lists in the inverted index structure. For the Pairwise
dataset, the inverted index yields a much better performance
than for the Uniform data. However, the PDR-tree contin-
ues to outperform the inverted index even in this case.

Real Datasets. This experiment compares the perfor-
mance of the two index structures for the two real datasets,
CRMI1 and CRM2. The results for CRM1 are shown in
Figure 6 and those for CRM2 are shown in Figure 7. The
overall relative performance of is the same as that for the
synthetic datasets. That is, the PDR-tree significantly out-
performs the inverted index. Since CRM1 is classification-
based data using a training set, it exhibits less uncertainty

CRM1-L1-TopK
CRM1-L1-Thres —=—
80 | CRM1-L2-TopK
CRM1-L2-Thres ——e—

CRM1-KL-TopK j
60 | CRM1-KL-Thres - |

Disk I/0

0.01 0.1 1 10
Selectivity

Figure 4. L1 vs L2 vs KL (PDR-tree)

60 r Uniform-Inv-Thres - g 1

Uniform-Inv-TopK
501 Uniform-PDR-TopK —*— 4
Uniform-PDR-Thres - Hemmee
40 Pairwise-Inv-TopK a
Pairwise-PDR-TopK *

30

Disk I/O

0.01 0.1 1 10
Selectivity

Figure 5. Inverted Index vs PDR-tree (synth)

that CRM2 which is based on unsupervised clustering. Con-
sequently, CRM1 is a sparse dataset while CRM2 is more
dense. As a result, the performance for CRM1 is about 10
times better than that for CRM2.

Dataset Size. This experiment studies the scalability of
the index structures as the size of the dataset is increased.
The test is run using the CRM2 data by indexing differing
numbers of tuples. Figure 8 shows the results. The x-axis
plots the number of tuples in thousands, and the y-axis plots
the number of disk I/O per query. As expected, the inverted
index scales linearly with dataset size, while the PDR-tree
scales sub-linearly.

Domain Size. We now explore the impact of the domain
size on index performance. In order to test this behavior,
we generate another dataset, Gen3, for which we vary the
number of items in the domain from 5 to 500. The number
of non-zero entries is in the range of 3 to 10. The results
are shown in Figure 9. As the domain size increases, the
inverted index improves in performance. This can be at-

120 T

100 |

80 r 3

60 r CRM1-Inv-Thres —- S
CRM1-Inv-TopK —&—
CRM1-PDR-Thres - P

Disk I/0

40 ' CRM1-PDR-TopK ——]
20 A
________ ;4
0 : gi—
0.01 0.1 1 "

Selectivity

Figure 6. Inverted Index vs PDR-tree (CRM1)

1800 , '
1600 1
1400 r
o 1200 CRM2-Inv-Thres - - |
hn CRM2-Inv-TopK —s—
1000 CRM2-PDR-Thres - P b
FEJ:’ 800 CRM2-PDR-TopK —*—
A 600 |
400 |
200 |
T
0 e I
0.01 0.1 1 1o

Selectivity

Figure 7. Inverted Index vs PDR-tree (CRM2)

tributed to the reduction in the average length of each list as
the number of lists increases with domain size (since there
is one list for each value in the domain). The charts for the
PDR-tree show an initial increase followed by a decrease
as the domain size increases. We believe this behavior is
related to the data generation process. In particular, the rel-
ative number of non-zero entries at both ends of our exper-
imental space are smaller than in the middle. This increase
in the relative number of non-zero entries in the middle of
the range results in poorer clustering for the PDR-tree.
PDR Split Algorithm. The final experiment studies
the relative performance of the top-down and bottom-up
strategies for the split algorithm of the PDR-tree. Figure
10 shows the results with the Uniform dataset. We find
that the top-down alternative gives worse performance than
the bottom-up alternative. The performance of top-down
is caused by outliers in the data that result in poor choices
for the initial cluster seeds. A similar relative behavior was
observed for the other datasets including the real data.

1800 T T T T

CRMZ—Iﬁv—Thresv ***** B
1600 CRM2-Inv-TopK
CRM2-PDR-Thres - *mmm
1400 I cRM2-PDR-TopK —+— 1
o 1200 b
~
H 1000 1
N
0 800]
-
8 600 1
400 1
200 1
0 e poozoooo- il i 7
10 20 30 40 50 60 70 80 90 100
Number of Tuples (x1000)
Figure 8. Scalability with Size of Data
140 T T T T T T T T T
Gen3-Inv-Thres - .
120 | Gen3-Inv-TopK —=— |
Gen3-PDR-Thres —- e
-PDR-TopK
100 Gen3 op
2
= 80 1
G
® 60t 1
A
40+ N T
20 el 1
* n;»\’“'"'—»-‘,xn
0 ! : : ! |
0 50 100150200 250300350400450500
Domain Size
Figure 9. Scalability with Domain Size
5. Related Work

There has been a great deal of work on the development
of models for representing uncertainty in databases [27]. An
important area of uncertain reasoning and modeling deals
with fuzzy sets [6, 14]. Recent work on indexing fuzzy sets
is not immediately related to our work as we assume a prob-
abilistic model [3, 4, 5, 16]. Another related area deals with
probabilistic modeling of uncertainty which is the focus of
this paper. The vast majority of this work has focused on
tuple-uncertainty. Tuple-uncertainty refers to the degree of
likelihood that a given tuple is a member of a relation. This
is often captured simply as a probability value attached to
the tuple. For example, the results of a text search predicate
can be considered to be a relation where the various tuples
(representing documents) have some degree of match with
the predicate. This match can be treated as a probabilis-
tic value [10]. Tuple uncertainty does not capture the type
of uncertainty addressed in this paper where the value of a

100 , ,
Uniform-TopDown-Thres ——
Uniform-BottomUp-Thres - S

60

40 1

Disk I/0

Selectivity

Figure 10. Top-down vs Bottom-up Approach

given attribute within a tuple is uncertain, whereas the tuple
is definitely part of the relation.

Another form of data uncertainty is a#tribute-uncertainty
wherein the value of an attribute of a tuple is uncertain while
other parts of the tuple have precise values. Work on rep-
resenting uncertainty in attribute values, has been studied
earlier [2, 8]. As with most work on tuple-uncertainty, the
issue of indexing uncertain attribute data has received little
attention. In [9] index structures for real-valued uncertain
data are developed. The proposed index structures, are only
applicable for continuous numeric domains. These indexes
could be modified to work for discrete domains such as in-
tegers, but they are inapplicable for general categorical data.

Burdick et al. consider the problem of OLAP over un-
certain data [7]. They model the uncertainty from text anno-
tators as tuple uncertainty and support aggregation queries
over this data. Similar to our work, the example data used in
their work is also taken from the CRM domain. Our model
differs from theirs in that they limit the classification of the
text to one class at a time (e.g. Brake is an attribute of
the relation with probability values stored for each tuple),
whereas we capture all reported problem areas (i.e. Brake,
Transmission, etc. are elements of our uncertain categorical
domain). Hence we represent the uncertainty as attribute
uncertainty whereas they model it using tuple uncertainty.
In their work, the value of interest within the domain (e.g.
Brake) is predetermined, while we make no assumptions
about the value of interest.

Indexing for set valued attributes has been extensively
considered in the literature. Faloutsos developed the notion
of signature files to index sets [13]. Indexing set-valued
attributes in databases has been considered by Mamoulis
[22]. Mamoulis ef al. also applied indexing for comput-
ing join queries over set-valued indexes [21]. Our indexing
problem is a generalization of the set model where we have

probability values in addition to the sets. To the best of our
knowledge, ours is the first work to address the problem of
indexing uncertain categorical data.

6. Conclusion

This paper considered an extension to traditional
database management systems that supports uncertainty in
data values. In particular, we focused on indexing tech-
niques for categorical uncertain data. Since such uncer-
tainty can be considered an extension of set-values at-
tributes, we proposed the extensions of signature trees and
inverted indexes for this problem. Both index structures
were shown to have good scalability with respect to dataset
and domain size. Experimental results showed that each
of these structures performed efficiently, but the nature of
the data and query parameters appeared to determine their
relative performance. In future work, we shall consider the
extension of these indexing techniques for more general un-
certain attributes and also develop better techniques depend-
ing on the domain specific data needs.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[2] D. Barbara, H. Garcia-Molina, and D. Porter. The manage-
ment of probabilistic data. IEEE Transactions on Knowledge
and Data Engineering, 4(5):487-502, 1992.

[3] P. Bosc and M. Galibourg. Indexing principles for a fuzzy
data base. Information Systems, 14(6), 1989.

[4] P. Bosc and O. Pivert. About projection-selection-join
queries addressed to possibilistic relational databases. /EEE
Transactions on Fuzzy Systems, 13(1), 2005.

[5] B. Boss and S. Helmer. Index structures for efficiently ac-
cessing fuzzy data including cost models and measurements.
Fuzzy Sets and Systems, 108(1), 1999.

[6] M. Boughanem, F. Crestani, and G. Pasi. Management of
uncertainty and imprecision in multimedia information sys-
tems: Introducing this special issue. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems,
11(1):1-4, 2003.

[7] D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), 2005.

[8] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2003.

[9] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Ef-
ficient indexing methods for probabilistic threshold queries
over uncertain data. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), 2004.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on prob-
abilistic databases. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), 2004.

[19]

[20]

[21]

[22]

[25]
[26]

[27]

(28]

A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In Proc. IEEE Int. Conf.
on Data Engineering (ICDE), 2006.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. In Proc. ACM Symp. on Principles
of Database Systems, 2001.

C. Faloutsos. Signature files. In Information Retrieval: Data
Structures & Algorithms, pages 44—65. Prentice-Hall, 1992.
J. Galindo, A. Urrutia, and M. Piattini. Fuzzy Databases:
Modeling, Design, and Implementation. ldea Group Pub-
lishing, 2006.

A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 47-57, 1984.

S. Helmer. Evaluating different approaches for indexing
fuzzy sets. Fuzzy Sets and Systems, 140(1), 2003.

I. Ilyas, W. Aref, and A. Elmagarmid. Supporting top-k join
queries in relational databases. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), 2003.

N. Khoussainova, M. Balazinska, and D. Suciu. Towards
correcting input data errors probabilistically using integrity
constraints. In Proceedings of the 5th ACM international
workshop on Data engineering for wireless and mobile ac-
cess, 2006.

K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Kr-
ishnapuram. A hierarchical monothetic document clustering
algorithm for summarization and browsing search results. In
Proceedings of the 13th international conference on World
Wide Web, 2004.

L. Lakshmanan, N. Leone, R. Ross, and V. Subrahmanina.
Probview: A flexible probabilistic database system. ACM
Transactions on Database Systems, 22(3):419-469, 1997.
N. Mamoulis. Efficient processing of joins on set-valued at-
tributes. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, 2003.

N. Mamoulis, D. Cheung, and W. Lian. Similarity search in
sets and categorical data using signature tree. In Proc. [EEE
Int. Conf. on Data Engineering (ICDE), 2003.

R. McCann, P. DeRose, A. Doan, and R. Ramakrishnan.
Slic: On-the-fly extraction and integration of web data.
Technical report, University of Illinois, 2006.

C. Oh, K. Honda, and H. Ichihashi. Fuzzy clustering for
categorical multivariate data. In IFS4A World Congress and
20th NAFIPS International Conference, 2001.
http://orion.cs.purdue.edu/, 2006.

F. C. N. Pereira, N. Tishby, and L. Lee. Distributional clus-
tering of english words. In Meeting of the Association for
Computational Linguistics, 1993.

S. Prabhakar. Tutorial on probabilistic queries and uncer-
tain data. In Intl. Conf. on Management of Data (COMAD),
2005.

J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In Proc. Conf. on Innovative
Data Systems Research (CIDR), 2005.

